Inflammation:

Novel Pro-Resolving Mediators and Mechanisms in Inflammatio: Immunoresolvents

Jesmond Dalli, Ph.D. Brigham & Women's Hospital and Harvard Medical School

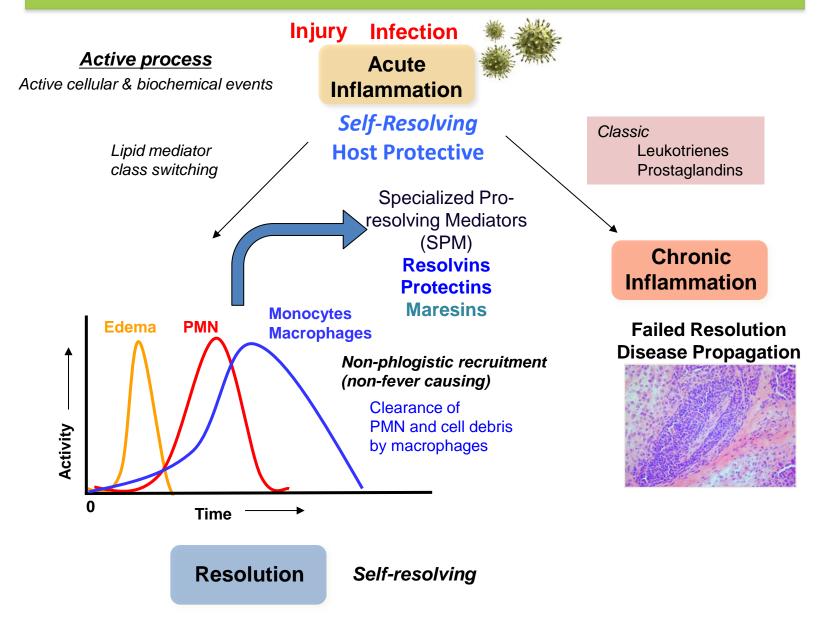
🔮 Metagenics[.]

Providing Educational Support for Healthcare Providers

Novel Pro-Resolving Mediators and Mechanisms in Inflammation: Immunoresolvents

Jesmond Dalli and Charles N. Serhan

Instructor Harvard Medical School



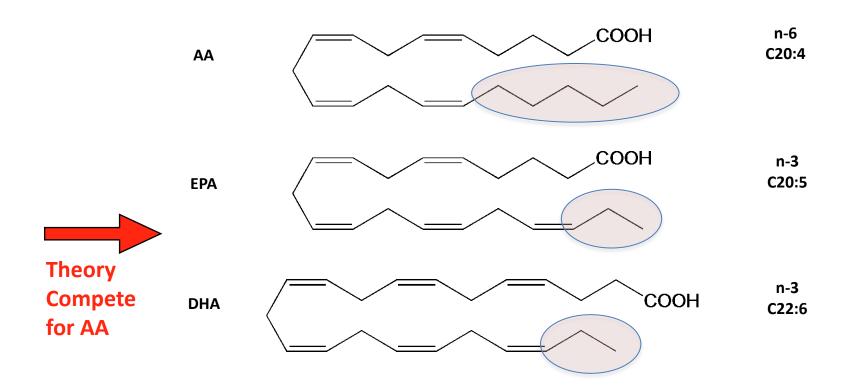
Lipid Mediator Metabololipidomics Co-leader Center for Experimental Therapeutics Brigham and Women's Hospital

Today's Outline: Focus on Human Translation

- What controls excess Inflammation & Infection ?
- Structural Elucidation of Novel Specialized Pro-Resolving Chemical Mediators (SPM)
- Functional Decoding Metabolomics of Novel
 Bioactive Mediators (Live Infections, Receptors)
- New Approach for Functional LM/SPM Profiling

Decision Paths in Acute Inflammation: Ideal Outcome is Resolution

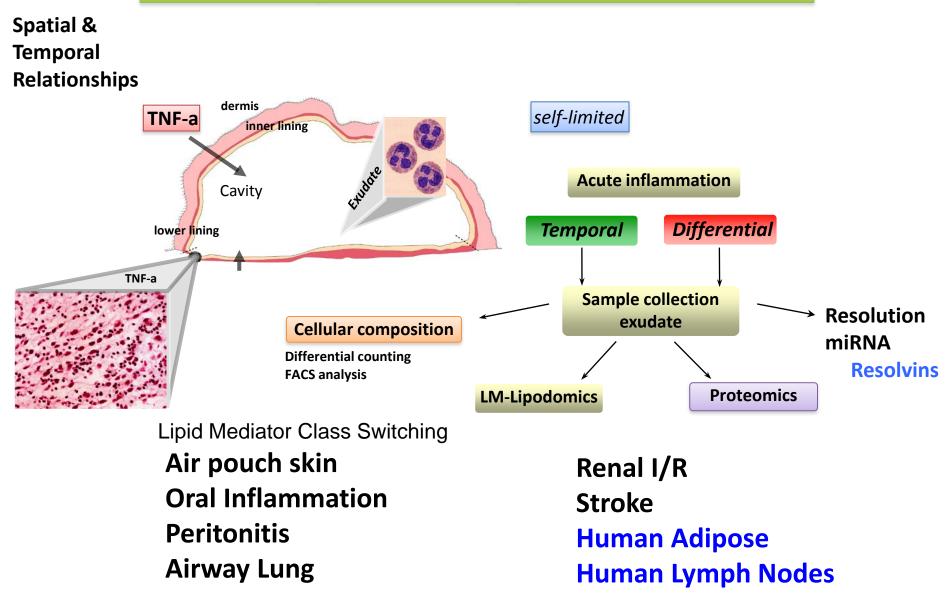
From Taber's Cyclopedic Medical Dictionary:


resolution 1. Decomposition; absorption or breaking down of the products of inflammation. 2. Cessation of inflammation without suppuration. The return to normal.

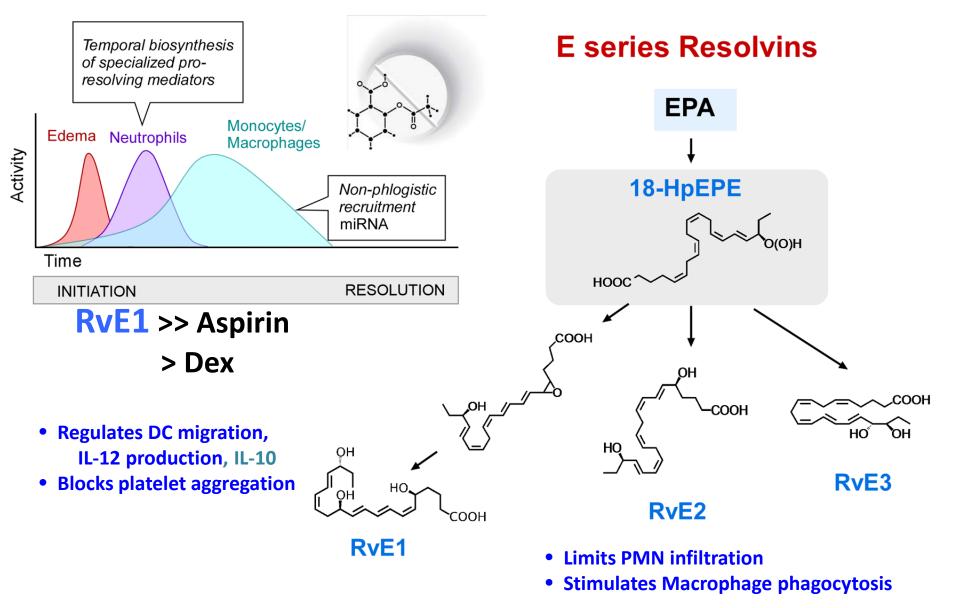
resolvant 1. Promoting disappearance of inflammation. 2. That which causes dispersion of inflammation.

Immunoresolvent: endogenous mediator or agent that stimulates resolution

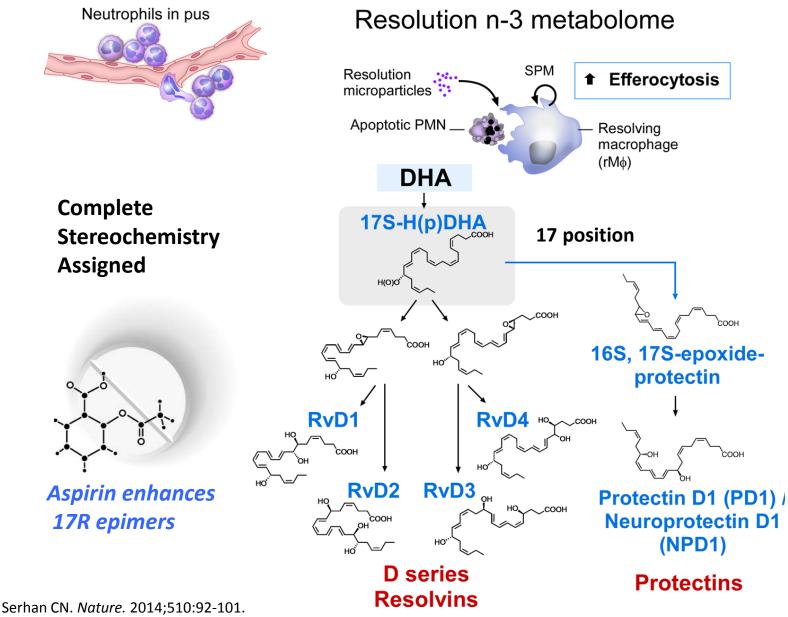
The resolution of inflammation: the devil in the flask and in the details Serhan CN. *FASEB J* 2011;25:1441-1448.


PUFA n-6 & n-3

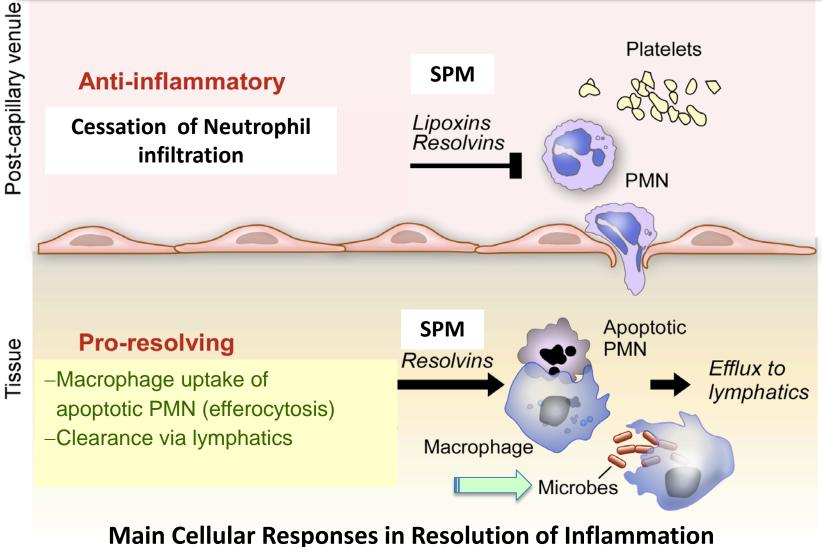
Essential fatty acids: They exert critical functions in human health Not produced by human cells Obtained from our diet


Systems Approach Mapping Resolution

Temporal-Differential Analyses of Resolution


Serhan CN. Ann Rev Immunology 2007;25:101-137.

Resolvin Biosynthesis by Human Leukocytes


Serhan CN. Nature. 2014;510:92-101.

Biosynthesis by Human Leukocytes : D- series Resolvins, Protectins & Maresins

Buckley CD et al. Immunity. 2014;40:315-327.

Key Functions Employed in Structural Elucidation of Novel Resolution Phase Mediators


used for structural elucidation of novel mediators

Serhan CN. Nature. 2014;510:92-101.

Tissue Protective: Mouse 12/15-Lipoxygenase and SPM							
Animal models	Alox15 gene modification	Actions/Phenotypes	Reference				
Cornea thermal	Alox12/15 deficient mice	1 Inflammation, comeal re-epithelialization	Gronert et al., 2005				
	Alox15 gene modification	Actions/Phenotypes	Reference				
Comea thermal injury	Alox12/15 deficient mice	 ↑ Inflammation, corneal re-epithelialization ↓ Wound healing, endogenous LXA₄ production LXA₄ rescues exacerbated inflammation and imparation wound healing in Alox15 deficient mice 	Gronert et al., 2005 Biteman et al., <i>ired</i> 2007				
Suture-induced chronic cornea Injury	Alox12/15 deficient mice	↑ Inflammatory neovascularization ↑ VEGF-A and FLT4 expression LXA ₄ rescues 15-LOX knockout mice from exacerbated angiogenesis	Leedom et al., 2010				
Peritonitis	Alox12/15 deficient mice	Eosinophil depletion causes resolution deficit, <i>rescued by PD1</i> Alox12/15 deficient mice eosinophils did not rescue the resolution phenotype	Yamada et al., 2011				
Dermal fibrosis	Alox12/15 deficient mice	↑ TGF-β stimulated MAPK pathway LXA₄ counters TGF-β stimulated fibroblast activation	Krönke et al., 2012				
Endometriosis	Alox12/15 deficient mice	EPA decreases lesions in WT but not in Alox12/15 deficient mice. ↓ RvE3 in Alox12/15 deficient mice compared to WT	Tomio et al., 2013				
Airway inflammation	on Alox12/15 deficient mice	\downarrow TLR7-mediated resolution of airway inflammation	Koltsida et al., 2013				
Peritonitis	Alox12/15 deficient mice	Low dose inhaled CO reduces PMN infiltration in WT, but not in Alox12/15 deficient mice	Chiang et al., 2013				

Serhan CN et al. *Biochim Biophys Acta* 2014;1851:397-413.

Change in Treatment for Inflammation Associated Diseases: Agonist of Resolution Immunoresolvents

Chronic Inflammation is a Unifying Component of Many Diseases: Role for Pro-Resolving Mediators *Failed Resolution ?*

Inflammatory Bowel Disease

Arita et al. (Serhan) PNAS 2005

Stem cells Wada et al. (Serhan) FASEB J 2006

Sepsis Spite et al. (Serhan) *Nature* 2009

Obesity Claria et al. (Serhan) *J Immunology* 2012

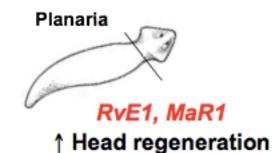
Tissue Regeneration Serhan et al. *FASEB J* 2012

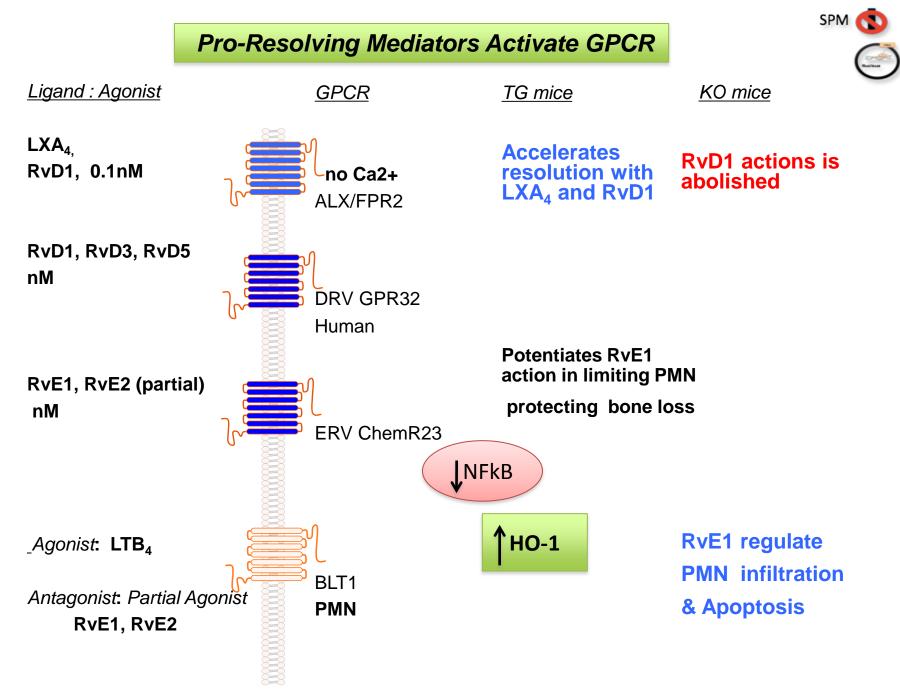
Asthma Levy et al. (Serhan) *Nature Med* 2002

Infection Chiang, N. et al. (Serhan) *Nature* 2012

Picogram to nanogram range potencies

Stroke Marcheselli et al. (Serhan and Bazan) *JBC* 2003


Atherosclerosis Merched et al. (Serhan and Chan) FASEB J.


Retinal Angiogenesis Connor et al. (Serhan and Smith) *Nature Med* 2007

Alzheimer Disease Lukiw et al. (Serhan and Bazan) JCI 2005; Wang et al 2014

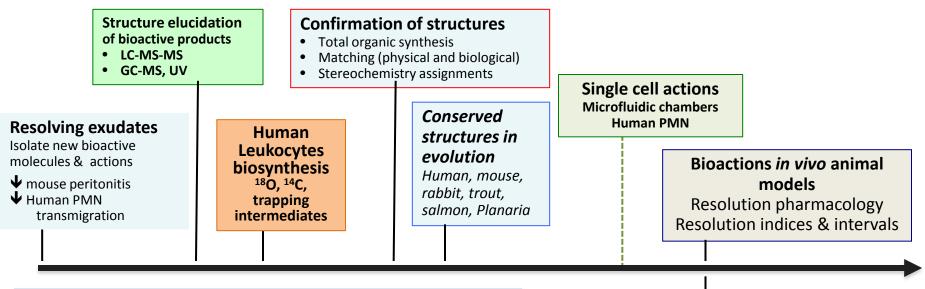
Periodontitis Hasturk et al. (Serhan and Van Dyke,TE) *FASEB J* 2006

Pain Xu, ZZ et al. (Serhan and Ji) *Nature Med* 2010

Serhan CN, Chiang N. Curr Opin Pharmacol. 2013;13:632-640.

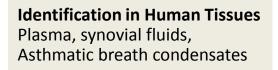
Infection regulates pro-resolving mediators that lower antibiotic requirements

Chiang N, Fredman G, Backhed F, Oh SF, Vickery T, Schmidt BA, Sherhan CN

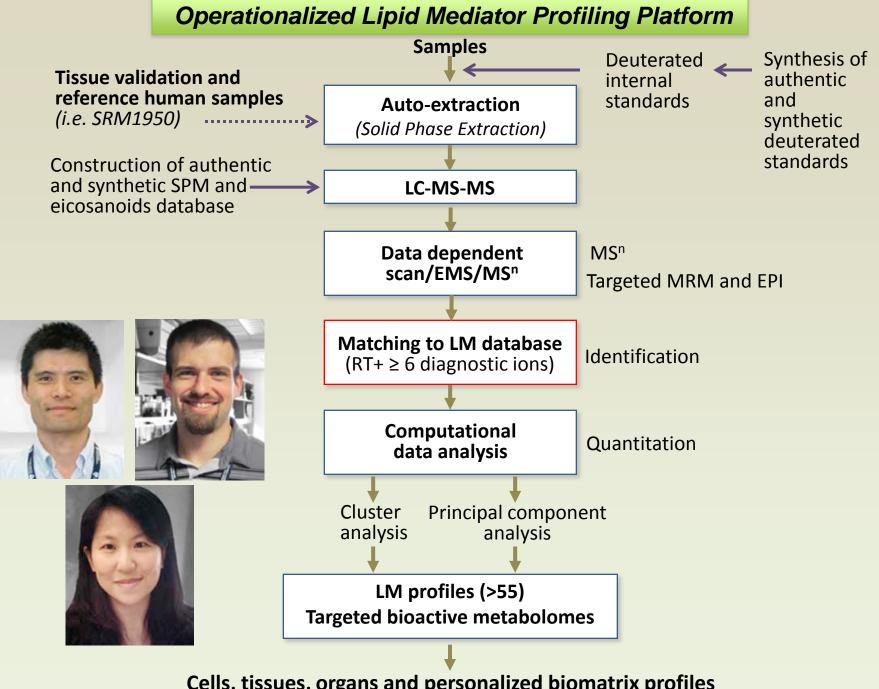

Resolvins Accelerate resolution of Infections Enhance bacterial killing, reduce inflammation **Treating the Host SPM** *Lowers* the required antibiotic doses

Chiang N et al. Nature. 2012;484:524-529.

Pro-Resolving Mediators: Towards Human Translation

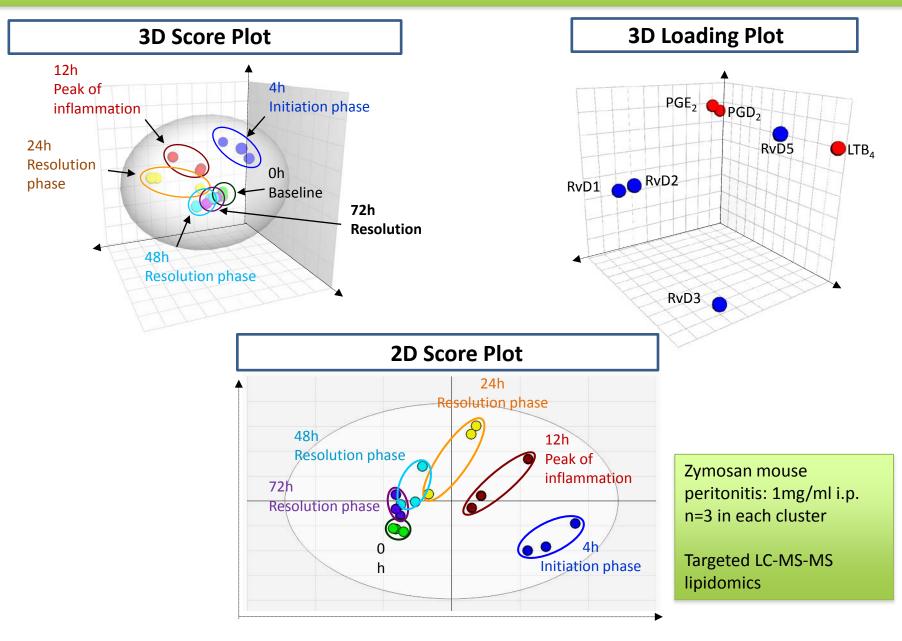

Focus on Structure Function

Resolvins & Protectins

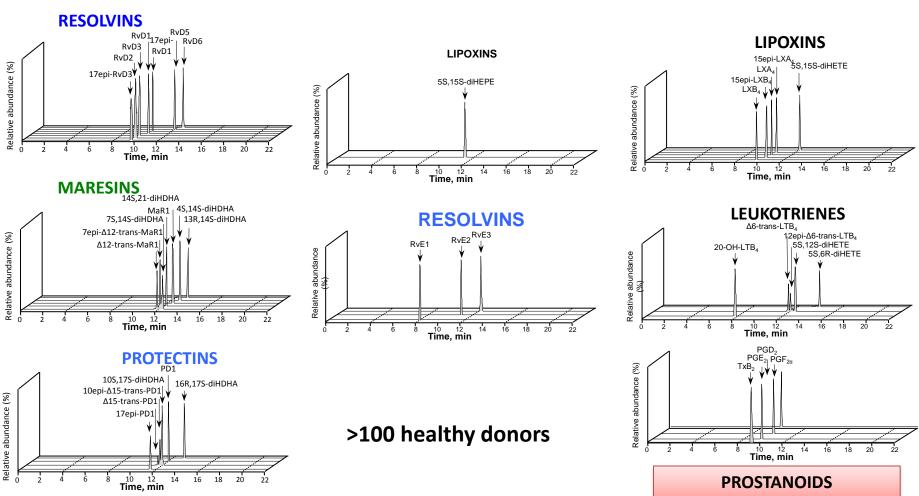


Criteria for pro-resolving mediator functions:

- Produced in vivo at levels commensurate with actions
- Reduces PMN chemotaxis and infiltration in vivo
- Enhances macrophage phagocytosis & efferocytosis
- Accelerates resolution (shorten resolution interval)
- Reduces pro-inflammatory cytokines (TNFa, IL-1b) and lipid mediators (e.g. PAF, PGs, LTs)
- Increases anti-inflammatory mediators (e.g. IL-10, LXA₄)



LC-MS-MS profiling


Cells, tissues, organs and personalized biomatrix profiles

Time Dependent LM SPM Clusters in Self-Resolving Mouse Peritonitis

Colas and Shinohara submitted Am J Physiol Cell Physiol.

Endogenous LM-SPM in human peripheral blood : Serum

Multiple reaction monitoring (MRM) of signature ion pairse obtained using the precursor ion (Q1) and a characteristic product ion (Q3) for each lipid mediator (LM). Bioactive LM, isomers and pathway markers identified in human serum .

Representative of 3 different pooled sera, each from >100 individual healthy donor (USA demographics)

DHA bioactive metabolome EPA bioactive metabolome

AA bioactive metabolome

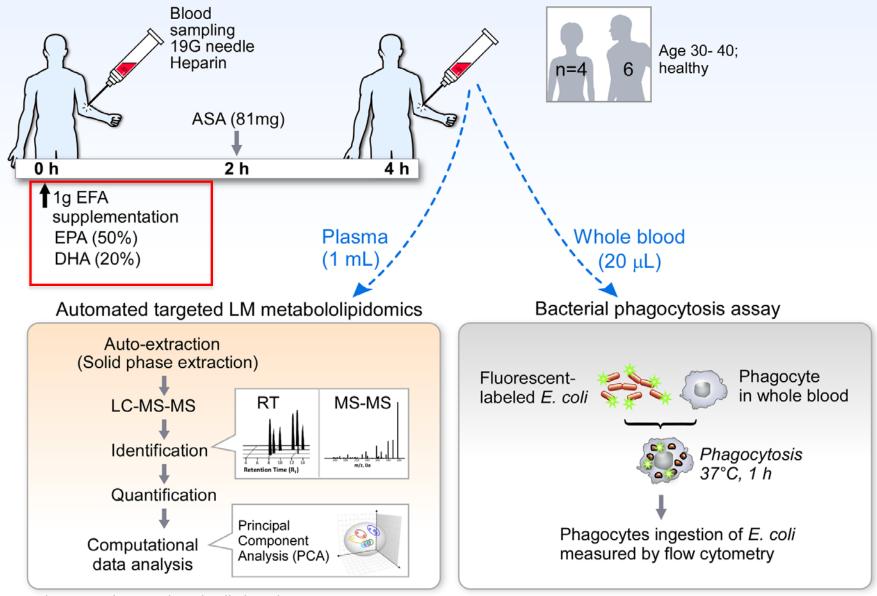
Human peripheral blood lipid mediators: NIST Plasma & Commercial Serum each 100 healthy Individuals pg/ml

AA bioactive metabolome	Commercial human serum	NIST human plasma reference material (SRM 1950)	
LXA ₄	115.6 ± 45.5	*	
15epi-LXA₄	59.2 ± 49.6	*	
LXB ₄	48.7 ± 25.2	*	
15epi-LXB₄	106.6 ± 67.0	*	
5S,15S-diHETE	789.4 ± 253.4	13.3 ± 1.1	
			Bioactive
LTB ₄	-	3.4 ± 0.2	Levels
Δ6-trans-LTB₄	744.0 ± 119.9	1.7 ± 0.1	pg/ml
12epi, ∆6-trans- LTB₄	662.5 ± 193.3	3.8 ± 0.3	(20-200pM)
5S,12S-diHETE	2162.6 ± 515.5	22.9 ± 0.7	
20-OH-LTB ₄	4.6 ± 3.0	2.4 ± 0.4	
20-COOH-LTB ₄	-	-	
PGD ₂	271.0 ± 57.7	7.0 ± 0.3	
	72.5 ± 10.9	4.1 ± 0.2	
PGF _{2α}	73.9 ± 23.2	4.8 ± 0.4	
TxB ₂	1061.0 ± 1036.3	-	

Human pooled serum (each pooled serum was a composite > 100 healthy individuals) compared to human pooled plasma from NIST standard reference (SRM 1950) (composite plasma 100 healthy individuals). Samples were extracted and lipid mediators (LM) investigated by LC-MS-MS-metabololipidomics. Results are expressed as pg/ml; mean \pm SEM; n=3 of pooled commercial human serum , d=3 for SRM 1950; %RSD, relative standard deviation; %RSD = (SEM/mean) x100; *, below IS limits.

© 2015 Serhan et.al.

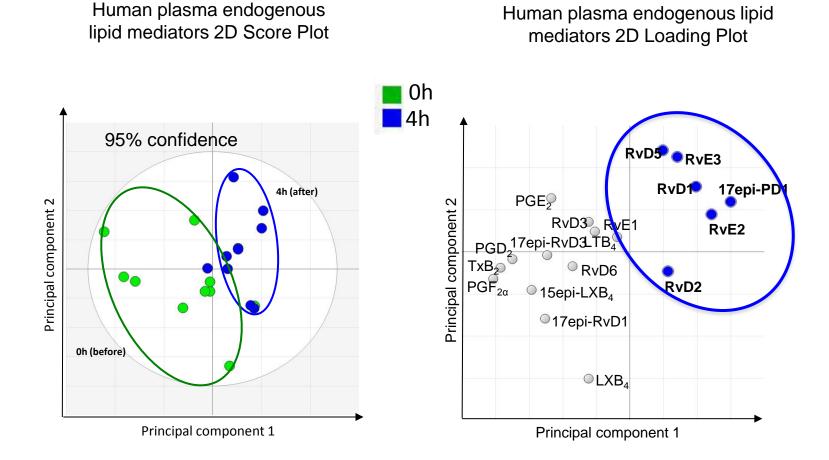
Human peripheral blood lipid mediators :


NIST Plasma & Commercial Serum each 100 healthy Individuals pg/ml

DHA bioactive metabolome	Commercial human serum	NIST human plasma reference SRM 1950				
RvD1 17epi-RvD1 RvD2	30.9 ± 7.0 40.7 ± 13.9 42.6 ± 13.9	2.6 ± 0.1	EPA bioactive metabolome	Commercial human serum	NIST human plasma reference (SRM 1950)	
RvD3	42.0 ± 10.0 34.3 ± 9.4	<u>-</u>	RvE1	12.5 ± 2.5	-	
17epi-RvD3	13.3 ± 4.6	<u> </u>	RvE2	2212.6 ± 1587.6	130.6 ± 7.8	
RvD5	86.8 ± 42.2	1.2 ± 0.3	RvE3	361.8 ± 187.3	-	
RvD6	687.0±156.2	58.1±5.2		Bioactive		
PD1	5.6±3.4	-	Levels (20-200pM)			
17epi-PD1	7.7 ± 1.4	-			•	
Δ15-trans-PD1	207.9 ± 61.6	-	Calibrat	tion between lab	oratories	
10epi-∆15-trans- PD1	223.1 ± 33.1					
10S,17S-diHDHA	227.4 ± 68.2		These mediators have also been identified in:			
MaR1	21.2±7.2	-	Human Milk (Weiss et al. Lipids Health and Dis 2013.)			
Δ12trans-MaR1	241.8 ± 64.6	-	Urine (Sasaki et al. Anal Bioanal Chem 2015.)			
7epi,∆12-trans- MaR1	101.8 ± 42.7		Lymph nodes (Colas et al. Am J Physiology 2014.)			
7S,14S-diHDHA	131.1 ± 52.3	-	Adipose Tissues (Claria et al. Am J Physiol Cell Physiol 2013.)			
4S,14S-diHDHA	1579.7 ± 282.8	69.6 ± 6.5				
14S,21-diHDHA	122.9 ± 2.7	-				

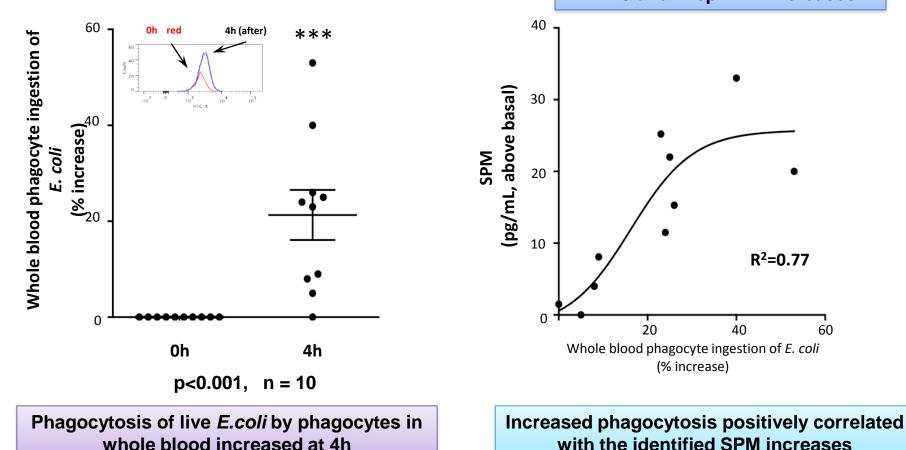
%

Human pooled serum (each pooled serum was a composite > 100 healthy individuals) and human pooled plasma from NIST standard reference (SRM1950) (composite plasma 100 healthy individuals). Samples were extracted and lipid mediators (LM) investigated.Results expressed as pg/ml; mean ± SEM; n=3of pooled commercial human serum, d=3, n> 330 for SRM 1950; - below IS limits.


Demonstration: Human SPM Production & Assessment of Function

Colas RA et al. Am J Physiol Cell Physiol. 2014;307:C39-C54.

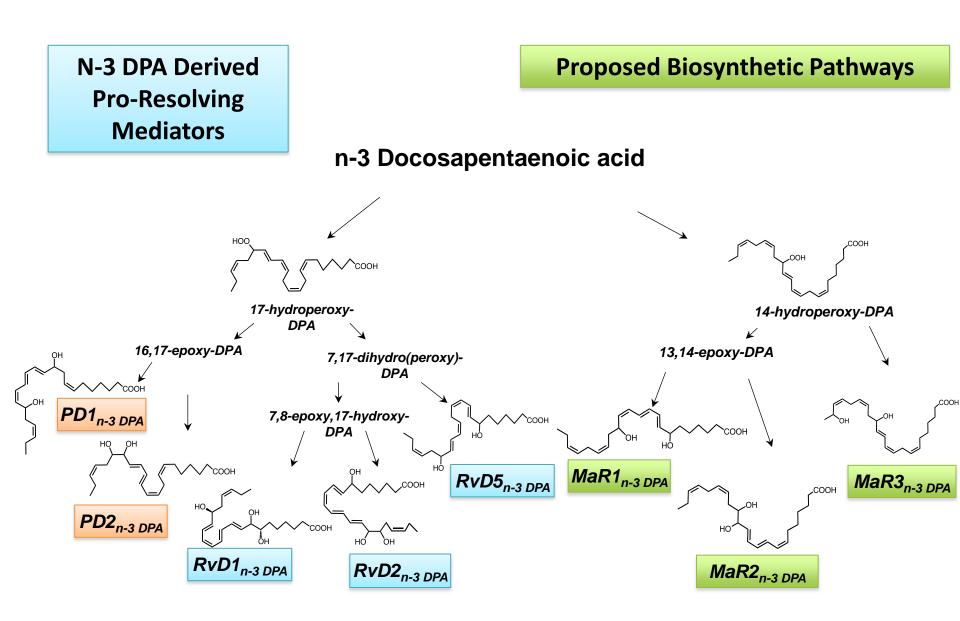
Human Plasma LM-SPM signature profiles PCA


Partial Least Square-Discrimination Analysis: (PLS-DA)

2D loading plot. Gray ellipse in the score plots denotes 95% confidence regions; n = 10 healthy donors.

Colas RA et al. Am J Physiol Cell Physiol. 2014;307:C39-C54.

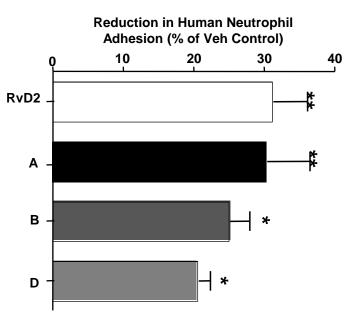
Human plasma LM-SPM signatures and increase in phagocytosis: PLS-DA


Summation of RvD1, RvD2, RvE2, **RvE3 and 17epi-PD1 increases**

R²=0.77

60

40


Colas RA et al. Am J Physiol Cell Physiol. 2014;307:C39-C54.

Dalli J et al. Sci Rep. 2013;3:1940.

n-3 DPA derived Resolvins , Protectins & J

+RvD1_{n-3} DPA + RvD2_{n-3} DPA + RvD2_{n-3} DPA

Novel n-3 Immunoresolvents: Structures and Actions Dalli J, Colas RA, Serhan CN

- Reduce I/R lung injury
- Stop PMN Endothelial interactions
- Enhance Human Macrophage Phagocytosis

Key Points & Conclusions

- Resolution is an active process with the biosynthesis of SPM
- Anti-inflammation is <u>not</u> equivalent to Pro-Resolution
- Identified endogenous SPM bioactive metabolomes with human tissues including lipoxins, resolvins, protectins and maresins at levels within their bioactive ranges (pg / ml in human plasma and serum) and lymphoid organs
- Human Demonstration LM-SPM signatures : impact of omega-3 and aspirin specific SPM increases correlated with enhanced phagocytosis of *E. coli* in human blood Functional SPM -Profliling

 Treatment of dry eye in humans:> 260 individuals RX-10045
 Proof of concept for the broad clinical utility of resolvins as novel therapeutics

SPM and their receptors provide new opportunities for the control of unwanted inflammation & infection via Resolution Pharmacology

Specialized Center for Inflammation - Resolution

R01GM38765 Acknowledgement P01GM095467

