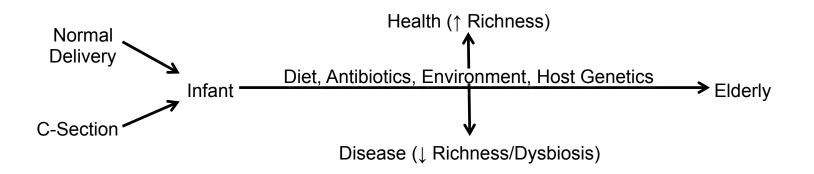
SYNBIOTIC EFFECTS DO THEY MAKE A DIFFERENCE?

Gail Cresci, PhD, RD, LD, CNSC Associate Staff Departments of Gastroenterology/Nutrition/Pathobiology Cleveland Clinic Cleveland, OH

Objectives

- Discuss rationale for synbiotic supplementation
- Present evidence for support of synbiotics and associated outcomes


SPECIAL ISSUE

Gastroenterolgoy

Volume 146, Number 6, May 2014

The Gut Microbiome in Health and Disease.

- Concepts in Mammalian Gut Microbiome
- The Gut Microbiome and Disease
- Therapeutic Modification of the Gut Microbiome

Altering Gut Microbiota Strategies

Probiotics

- Limitations:
 - Viability
 - Fermentation substrate lacking
 - Transient colonization
- Prebiotics
 - Limitations:
 - Bacterial target depleted
- Fecal Microbiota Transplant
 - Limitations:
 - FDA regulated (except for *C. difficile* colonization)
 - Expensive with minimal reimbursement
 - Donor recruitment and screening (Biosafety level 1 and/or 2)
 - Aesthetic

Synbiotic

- Combination of probiotic and prebiotic
 - Meets criteria of probiotic and prebiotic
 - The prebiotic selectively supports the growth of the probiotic component
- General Aim:
 - Support the probiotic and other indigenous beneficial organisms by providing a preferred carbon and energy source to promote its growth
 - Provide substrate for optimal or desired fermentation byproducts of probiotic

Types of Synbiotic Approaches

- Complementary
 - Probiotic chosen based on specific desired beneficial effects on the host
 - Prebiotic independently chosen to selectively increase concentrations of beneficial microbiota components

 Indirectly promotes growth and activity of probiotic

Synergistic

- Probiotic is chosen based on specific desired beneficial effects on the host
- Prebiotic is selected to have higher affinity for probiotic
 - Chosen to improve probiotic survival and growth in host
 - May also increase levels of beneficial host GI microbiota
 - Primary target is ingested probiotic

What is the evidence?

- Limited studies for synbiotic therapy
- Areas studied:
 - Irritable bowel syndrome
 - Very few studies <5
 - Disease etiology unknown
 - o Target IBS symptoms?
 - Limited understanding of microbiota composition associated with IBS
 - Colon cancer risk
 - Main evidence animal studies of tumorigenesis, transgenic animals, chemically induced models of mutagenesis, *in vitro* cell line models
 - Glycemia, insulin, lipid parameters in obesity, overweight
 - Surgical Patients
 - Inflammatory bowel disease

A systematic review and meta-analysis of the prebiotics and synbiotics effects on glycaemia, insulin concentrations and lipid parameters in adult patients with overweight or obesity

Study–year	Country	Supplement	Study design/ quality score	Population	Mean BMI (kg/m ²)	Sex	Age (years)	Sample size (n)	Intervention — daily dose	Control — daily dose	Duration (days)	Results (Intervention vs control — after supplementation)
Asemi et al., 2014 [21]	Iran	Synbiotic	Cross-over RCT/EPHPP:1 CONSORT:23	Excess weight with type 2 diabetes	Intervention 29.9 \pm 5.2 Control 29.6 \pm 4.5	M/F	35–70	62	L. sporogenes $(27 \times 10^7 \text{ CFU}) +$ 1.08 g of inulin (n = 62)	Control food without synbiotc (n = 62)	62	↓ Fasting insulin (-1.98 µU/mL) ↔ HDL-c ↔ LDL-c ↔ Fasting glucose ↔ Total cholesterol ↔ Triglycerides
Malaguarnera et al., 2012 [27]	Italy	Synbiotic	Parallel RCT/ EPHPP: 1 CONSORT: 26	Excess weight with non alcoholic steatohepatitis	Intervention: 27.3 ± 1.4 Control: 27.2 ± 1.3	M/F	30–65	66	B. longum W11 (5 \times 10 ⁹ CFU) + 2.5 g of FOS (n = 34)	Placebo – 2.5 g (<i>n</i> = 32)	168	↓ LDL-c (-21.7 mg/dL) \leftrightarrow Fasting glucose \leftrightarrow Fasting insulin \leftrightarrow Total cholesterol \leftrightarrow HDL-c \leftrightarrow Triglycerides
Moroti et al., 2012 [28]	Brazil	Synbiotic	Parallel RCT/ EPHPP: 2 CONSORT: 26	Excess weight with dyslipidemia and type 2 diabetes	Intervention: 27.7 ± 0.8 Control: 28.2 ± 0.9	F	50–65	20	200 mL of shake containing <i>L. acidophilus</i> $(8 \times 10^8 \text{ CFU}) + B. bifidum$ $(8 \times 10^8 \text{ CFU}) + \text{FOS} - 2$ g $(n = 10)$	200 mL of shake without synbiotic $(n = 10)$	30	 ↔ Total cholesterol ↔ Triglycerides ↔ Fasting glucose. ↔ HDL-c
Eslamparast et al., 2014 [24]	Iran	Synbiotic	Parallel RCT/ EPHPP: 1 CONSORT: 29	Obesity with nonalcoholic fatty liver disease	Intervention: 32.1 ± 2.4 Control: 31.3 ± 2.3	M/F	' ≥18 ^b	52	L. casei + L. rhamnosus + S. thermophilus + B. breve + L. acidophilus + B. longum + L. bulgaricus (4×10^8) + FOS (n = 26)	Maltodextrin (n = 26)	196	↓ Fasting insulin (–1.2 μU/mL) ↓ Fasting glucose (–6.7 mg/dL)

Beserra BT et al. Clin Nutr 2014; Published online: October 20, 2014

Results of 13 trials; 513 adults with BMI > 25 kg/m² **Synbiotic vs. Placebo** NO DIFFERENCE:

- Total Cholesterol
- LDL-Cholesterol
- HDL-Cholesterol

Results (cont)

Synbiotic vs. Placebo

Significant reduction in:

- Triglyceride concentrations
- Fasting Insulin

Surgical Patients

- Transplant patients, Post-operative patients
 - Sepsis
 - Nosocomial infections
 - Gut permeability
 - Gut dysbiosis

Surgical Synbiotic Studies

- Results encouraging
- Commercially available products studied
- Multi-strain probiotics
- Lack of placebo or proper controls
 - Unable to elucidate mechanisms

Study-year	Study Design	Patient Population	Intervention	Outcomes
Anderson et al, 2004	Randomized DB, Placebo- controlled	N=137, elective laparotomy	Supplement 3x/day: 4x10 ⁹ CFU <i>L.</i> <i>acidophilus</i> La5, <i>L.</i> <i>bulgaricus, B. lactis</i> Bb12, <i>S.</i> <i>thermophilus</i> +16 g oligofructos 2x/day Supplemented 1-2 weeks preop until hospital discharge	No difference in bacterial translocation and colonization, systemic inflammation, septic complications
Rayes et al, 2005	Randomized DB, no placebo	N=66, liver transplant	Synbiotic 2000 vs fiber only – added to enteral formula x14 days post-op	Lower post-op infections in Synbiotic (3%) vs fiber (48%); less antibiotic duration required
Rayes et al, 2005	Randomized DB, no placebo	N=89; Pylorus preserving pancreatoduod enectomy	Synbiotic 2000 vs fiber only: 1 day preop + 8 days post- op	Lower post-op infections in Synbiotic (12.5%) vs fiber (40%)
Sugawara et al, 2006	Randomized, controlled	N=101; high- risk hepatobiliary resection	Post-op only vs 2 wk Pre-op +2 wk post- op: 4x10 ¹⁰ <i>L. casei</i> Shirota, 10 ¹⁰ <i>B.</i> <i>breve</i> , 15 g GOS – delivered orally/daily preop; 10 ⁸ CFU <i>L.</i> <i>casei</i> , 10 ⁸ CFU <i>B.</i> <i>breve</i> + 15 g GOS	Periop treatment resulted in decreased infections, WBC counts, CRP; Both probiotics detected in feces

Synbiotic 2000 [10¹⁰ CFU of each *Pediacoccus pentoseceus, Leuconostoc mesenteroides, L. casei* spp. p*aracasei* F1977:1, *L. plantarum* 2362 + 2.5 g each of β-glucans, resistant starch, inulin, pectin]

Inflammatory Bowel Disease Crohn's, Ulcerative Colitis, Pouchitis

- No cure limited to maintenance of remission
- Current therapies: anti-inflammatory and immunomodulating drugs, nutritional support, surgery
- Disease etiology unknown
 - Believed in part due to altered tolerance to normal gut microbiota or disturbed microbiota
 - Likely caused by complex combination of genetics, environmental factors, immune system
- Probiotic against UC and pouchitis studied
 - Several encouraging reports
 - Multi-strain better than single strain products
- Limited studies with synbiotics and IBD

Synbiotics in IBD

- Difficult to design a synbiotic against a disease of unknown etiology
- Development of immune biomarkers as potential targets for synbiotic development

Synbiotic 2000 [10¹⁰ CFU of each *Pediacoccus pentoseceus, Leuconostoc mesenteroides, L. casei* spp. paracasei F1977:1, *L. plantarum* 2362 + 2.5 g each of β-glucans, resistant starch, inulin, pectin]

Study-year	Study	Patient	Intervention	Outcomes
	Design	Population		
Furrie et al, 2005	Randomize d, controlled, pilot	N=18, UC patients	2x1011 CFU <i>B. longum</i> + prebiotic (6g inulin/ oligofructose) 2x/day for 4-weeks; placebo : starch + 6g maltodextrose	Synbiotic group decreased TNFα, IL1α, antimicrobial human β-defensin peptides increase mucosal Bifidobacteria
Osman et al, 2006	Sprague- Dawley rats, controls	Dextran sulfate sodium (DSS) - induced colitis	<i>B. Infantis</i> DSM 15158 or <i>B. infantis</i> DSM 15159, alone or with prebiotic (6g inulin/ oligofructose); pretreated for 7 days (single probiotic +/- prebiotic) – then treatments for 7 days continued	All treatments reduced disease activity indices [bacterial translocation, SCFA, cytokine production, myeloperoxidase, malondialdehyde]; additive effect with prebiotic (increased succinate levels); <i>B. infantis</i> DSM 15159 better in reducing malondialdehyde levels
Ishikawa et al, 2011	Randomize d, placebo	N=41, Ulcerative colitis	<i>B. Breve</i> Yakult + galactooligosaccharide, for 1 year	Improved endoscopic score, Matt's classification
Fujimori et al, 2007	Open label study, no controls	N=10, active Crohn's disease	3x1011 CFU <i>B. breve,</i> 3x1011 CFU <i>L. casei,</i> 1.5x1010 CFU <i>B.</i> <i>longum</i> daily + prebiotic (3.3g pysilium 2x/day) 10 months	Improved symptom scores (n=7)
Chermesh et al, 2007	Randomize d, placebo	N=30, ileal resection Crohn's disease patients	Synbiotic 2000 – 24 months	No effect on remission or disease scores
Steed et al, 2010	Randomize d, DB, placebo	N=35, active Crohn's patients	<i>B. Longum</i> + prebiotic (6g inulin/oligofructose)	Decreased disease activity indices and histological scorese; decreased TNFα at 3 mo (not 6 mo); ? Mucosal bifidobacteria

Suggested Steps for Establishing a Synbiotic Formulation

PREBIOTIC: Component source, structure, purity & composition characterisation

Prebiotic selection and assessment:

- Resistance to upper GIT digestion in vitro/in vivo ileostomy patients
- In vitro prebiotic efficacy, pH controlled human faecal culture (multiple donors). Use molecular methodologies to evaluate selective stimulation of beneficial bacteria

Safety assessment:

In vitro/animal and/or Phase 1 human, study if not GRAS or equivalent

In vitro selection of prebiotic to best support specific probiotic strain growth:

arowth curves

- pH controlled human faecal culture (multiple donors)
- Comparing prebiotic, probiotic and synbiotic efficacy

SYNBIOTIC: Double blind, placebo controlled, randomized human studies to determine efficacy of product/strain (phase 2 clinical studies)

- Compare synbiotic to probiotic and prebiotic components alone
- Determine minimum does to mediate desirable effect
- Establish effect on health biomarkers

(viability and activity in product) Resistance to gastric acidity and bile acid secretions (Clinical evaluation in phase 1 studies) Antimicrobial activity against potential pathogens

Adherence to mucus and/or human epithelial cell lines

Resistance to technological processes used for their manufacture

PROBIOTIC: Strain identification through genotypic and

Persistence within the gastrointestinal tract

Deposit in international culture collection

Probiotic selection and assessment:

Safety assessment:

phenotypic methodologies:

Genus, species, strain

Human origin

- Determination of antibiotic resistance patterns
- Side-effect assessment during human studies
- Epidemiological follow-up to determine adverse effects on consumers
- Determination of toxin production
- Determination of hemolytic activity
- Assessment of bacterial metabolic activities e.g. D-lactate production, bile salt deconjugation
- Clinical evaluation in phase 1 studies

SYNBIOTIC FOOD-FORMUALTION

Stability of synbiotic in product matrix. Labeling:

- Health claim
- Genus, species and strain designation
- Minimum numbers of viable bacteria at end of self life, effective dose
- Appropriate storage conditions

Kolida S, et al. Annu Rev Food Sci Technol 2011;2:373.

Synbiotic therapy (*Bifidobacterium longum*/Synergy 1) initiates resolution of inflammation in patients with active ulcerative colitis: a randomised controlled pilot trail

- Synbiotic development
 - Screened 19 Bifidobacterium isolates for suitability as probiotics
 - 10 isolated from healthy colonic mucosa, 5 healthy feces, 4 culture collections
 - Tested for aerotolerance, acid tolerance, bile-salt resistance, adhesion to epithelial cells, ability to survive freeze drying and long-term storage
 - Ability to metabolize FOS as energy source determined
 - Ability to reduce proinflammatory cytokine production tested (in vitro)
 - B. longum isolated from healthy rectal mucosa and selected for further study
- Human pilot study (n=16)
 - 8 ingested 2x10¹¹ viable, freeze-dried *B. longum* in gelatin capsule + 6 gm prebiotic (inulin/oligofructose) 2x/d for 4 weeks vs control (starch + maltodextran)
 - Sigmoidoscopy scores, TNFα, IL1α, antimicrobial human β defensin, mucosal bifidobacteria start/end of treatment
- Improvements in parameters in Synbiotic group

Synbiotic consumption changes the metabolism and composition of the gut microbiota in older people and modifies inflammatory processes: a randomised, doubleblind, placebo-controlled crossover study

- Synbiotic vs placebo in Healthy volunteers (n=43)
 - Placebo vs *B. longum (2x10¹¹)*+ prebiotic (inulin/oligofructose [DP2-60] – 6 g) twice daily (after breakfast, following evening meal)
 - 12 wks: 4 wk ⇒ 4 wk washout ⇒ 4 wk
- Outcomes:
 - Increase fecal bifidobacteria
 - Improvements in colonic bacterial composition, inflammatory markers linked to aging, bowel habit, health status

Macfarlane S et al. *Aliment Pharmacol Ther* 2013;38:804-816

Bowel habit and general mood of volunteers throughout the study*

		Synbiotic		Placebo			
	Baseline	Week 2	Week 4	Baseline	Week 2	Week 4	
Abdominal pain	1.7 ± 3.4	1.4 ± 3.1	1.2 ± 3.3	1.2 ± 3.1	2.0 ± 3.8	1.6 ± 3.6	
No of stools	11.7 ± 8.1	11.6 ± 7.3	11.7 ± 5.3	10.5 ± 5.6	10.9 ± 6.0	11.4 ± 6.2	
Stool consistency	14.5 ± 4.3	14.7 ± 4.7	15.4 ± 4.3	14.6 ± 4.8	15.0 ± 4.7	14.0 ± 5.0	
Bowel movement frequency			0.3 ± 0.9			0.3 ± 1.3	
Well-being			0.1 ± 0.7			0.2 ± 0.9	
λ (aluga are measure to all $(n - 42)$							

Values are means \pm s.d (n = 43)

Changes in bacterial populations in healthy older people during 4-week synbiotic or placebo consumption, as determined by fluorescent *in situ* hybridisation*

		Synbiotic		Placebo			
	Baseline	Week 2	Week 4	Baseline	Week 2	Week 4	
TNFα Total bacteria	10.2 ± 0.5	10.4 ± 0.5	10.5 ± 0.6	10.4 ± 0.6	10.3 ± 0.5	10.3 ± 0.5	
Firmicutes	9.5 ± 0.7	10.2 ± 0.6^{ao}	10.3 ± 0.6 ^{go}	9.8 ± 0.7	9.7 ± 0.5^{a}	9.7 ± 0.6^{g}	
Bacteroidetes	9.4 ± 0.6	9.7 ± 0.4	9.5 ± 0.6	9.6 ± 0.4	9.5 ± 0.4	9.5 ± 0.5	
Proteobacteria	7.9 ± 1.4	7.9 ± 1.4^{b}	6.9 ± 1.2^{ho}	8.0 ± 1.2	8.3 ± 1.2 ^b	7.9 ± 0.9^{h}	
Actinobacteria	9.3 ± 0.5	$9.8 \pm 0.4^{\circ}$	9.9 ± 0.2^{i}	9.3 ± 0.2	9.4 ± 0.4 ^c	9.1 ± 0.3^{i}	
Total bifidobacteria	8.7 ± 0.4	9.5 ± 0.3^{do}	9.9 ± 0.4^{jo}	8.6 ± 0.3	8.7 ± 0.4^{d}	8.5 ± 0.4^{j}	
B. adolescentis	8.2 ± 0.3	8.4 ± 0.3	9.2 ± 0.4^{ko}	8.0 ± 0.6	8.1 ± 0.5	7.9 ± 0.2^{k}	
B. angulatum	8.0 ± 0.5	8.5 ± 0.5^{eo}	9.1 ± 0.5^{lo}	8.2 ± 0.6	8.0 ± 0.4^{e}	8.3 ± 0.5^{1}	
B. bifidum	7.8 ± 0.2	8.4 ± 0.3°	8.6 ± 0.5 ^{mo}	8.1 ± 0.3	8.3 ± 0.4	8.2 ± 0.5^{m}	
B. breve	ND	ND	ND	7.9 ± 1.8	ND	ND	
B. catenulatum/pseudocatenula	atum ND	7.9 ± 0.8	7.8 ± 0.9	ND	ND	ND	
B. longum	8.1 ± 0.4	8.6 ± 0.2^{fo}	8				
Values are mean log ₁₀ cells/g o	f faeces \pm s.d (n = 43)		↑ Firm	↑ Firmicutes/Bacteroidetes ratio 1.3 to 0			
		Synbiotic		Placebo			
	Baseline	Week 2	Week 4	Baseline	Week 2	Week 4	
Acetate	58.9	58.7	60.4	61.3	60.7	62.6	
Propionate	22.3	19.5	18.1	19.6	19.2	18.7	
Butyrate	18.8	21.8	21.5	19.1	20.1	18.7	

Conclusions & Future Directions

- Scope is broadening for synbiotics in health and disease
- Term "synbiotic" has been used loosely
 - Little rational selection of the prebiotic/probiotic combinations
- Research lacking in proper controls to confirm/deny synergistic or additive effect
- Several studies use fibers not recognized as prebiotics
- Little attempt made to confirm growth of the probiotic on the prebiotic questioning the nature of the effect
- Formulation of successful synbiotic is complex
- Future studies should include
 - Minimum effective dose to mediate desirable effect in absence of side effects
 - Rational selection of pre/probiotic with appropriate targeted biomarkers

Conclusions & Future Directions

- Scope is broadening for synbiotics in health and disease
- Term "synbiotic" has been used loosely
 - Little rational selection of the prebiotic/probiotic combinations
- Research lacking in proper controls to confirm/deny synergistic or additive effect
- Several studies use fibers not recognized as prebiotics
- Little attempt made to confirm growth of the probiotic on the prebiotic questioning the nature of the effect
- Formulation of successful synbiotic is complex
- Future studies should include
 - Minimum effective dose to mediate desirable effect in absence of side effects
 - Rational selection of pre/probiotic with appropriate targeted biomarkers