Clinical Evidence Supporting the Role of Healthy Fats to Reduce CVD Risk Factors Presentation 2 of 2

Penny M. Kris-Etherton PhD RD FAHA FNLA FASN CLS

Department of Nutritional Sciences

Penn State University

Outline

- Clinical trial evidence to support recommendations for unsaturated fatty acids
- New research on minor fatty acids
- Translating recommendations to dietary patterns
- Summary

COMIT: Canola Oil Multi-Centre Intervention Trial

Modification of dietary fatty acid quality toward optimal n-6, n-9 and short and long chain n-3 fatty acid profiles, by the inclusion of novel oil blends, will benefit CVD risk factors

Jones et al. Am J Clin Nutr. 2014;100:88-97.

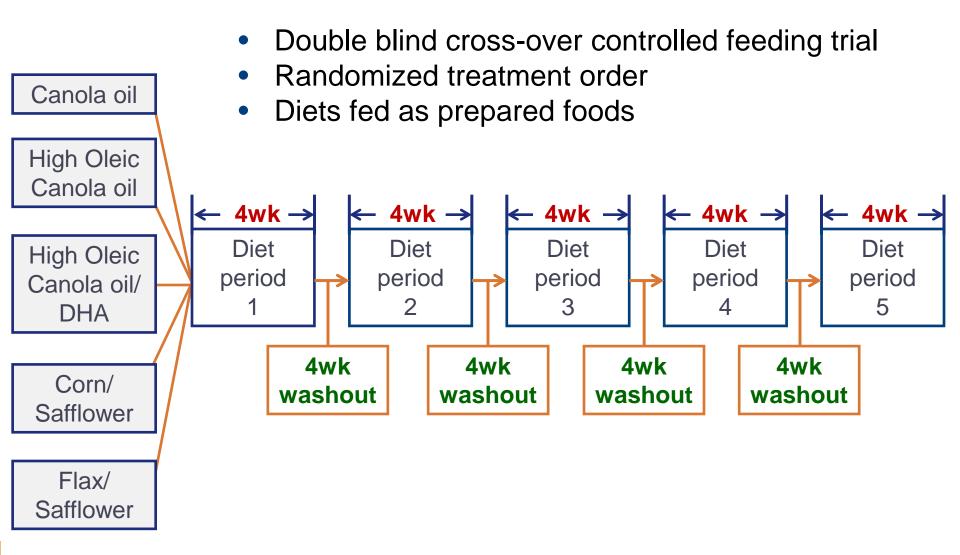
Objectives

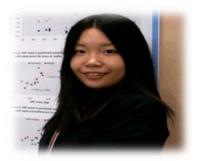
- 1. Examine alterations in plasma lipids, lipoprotein subclasses, and inflammatory cytokines
- 2. Assess endothelial function in response to treatment oils
- 3. Examine changes in body composition using DEXA (dual energy x-ray absorptiometry) scanning
- 4. Examine efficiency of FA conversion to EPA/DHA
- 5. Investigate association between gene mRNA and protein expression with ALA conversion efficiency to EPA/DHA
- 6. Investigate association between genetic variants with ALA conversion to EPA/DHA

Eligibility Criteria

Based on International Diabetes Federation Definition of Metabolic Syndrome

- Age: 20-65 y
- BMI: \geq 22 to \leq 40 kg/m²
- Waist circumference (WC): Men \geq 94 cm, Women \geq 80 cm
- WC + one of the following metabolic syndrome criteria:
 - Glucose: ≥ 5.6 mmol/L (100 mg/dL)
 - HDL-C: men < 1.0 mmol/L (40 mg/dL), women < 1.3 mmol/L (50 mg/dL)
 - TG: ≥ 1.7 mmol/L (150 mg/dL)
 - Blood pressure: >130/85mmHg

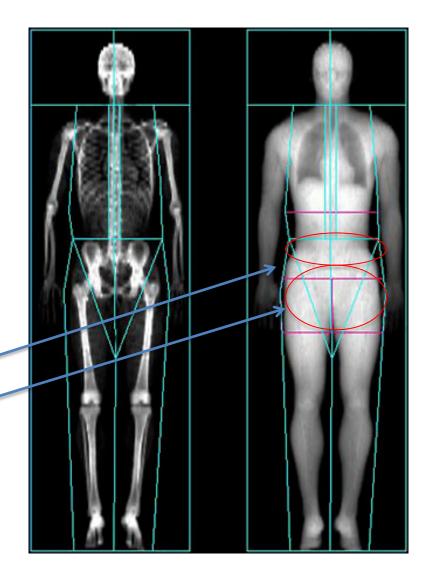

Fatty Acid Profile of Treatment Oils


		Treatment oils	SFA	MUFA	PUFA	Omega-3 (%)		Omega-6 (%)	
Isocaloric base diet		meatment ons	(%)	(%)	(%)	ALA	DHA	LA	
Macronutrient	%	Canola	7.2	62.8	29.5	9.8		19.5	
СНО	50	High Oleic Canola	6.5	72	17	2.3		14.7	
FAT	35	High Oleic Canola + DHA	8.6	63.8	23.3	2.0 (5.8	12.7	
PRO	15	Corn/Safflower	7.9	17.7	69.6	<1		69.3	
		Flax/Safflower	8.1	17.9	69.4	32)	37.5	

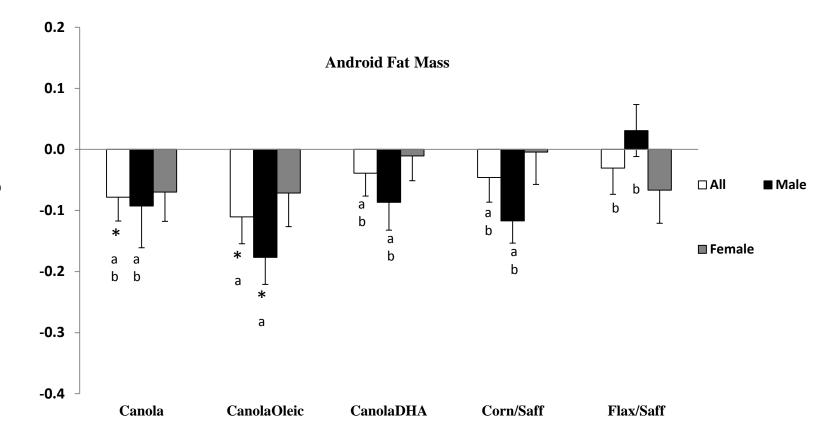
60 g of oil/day based on 3000 kcal diet; consumed as a "smoothie"

Jones et al. Am J Clin Nutr. 2014;100:88-97.

Study Design


DEXA Technique

Xiaoran Liu


•DEXA measures % body fat and divides the body into three compartments: fat mass, bone mass, and lean mass.

 In addition, the DEXA method determines % fat, fat mass, bone mass and lean mass separately for the arms, trunk (android), and legs. (gynoid)

• | Android:Gynoid ratio decreases risk factors for CVD

Android Fat Mass Changes in Response to Five Experimental Diets (n = 20 males and 34 females)

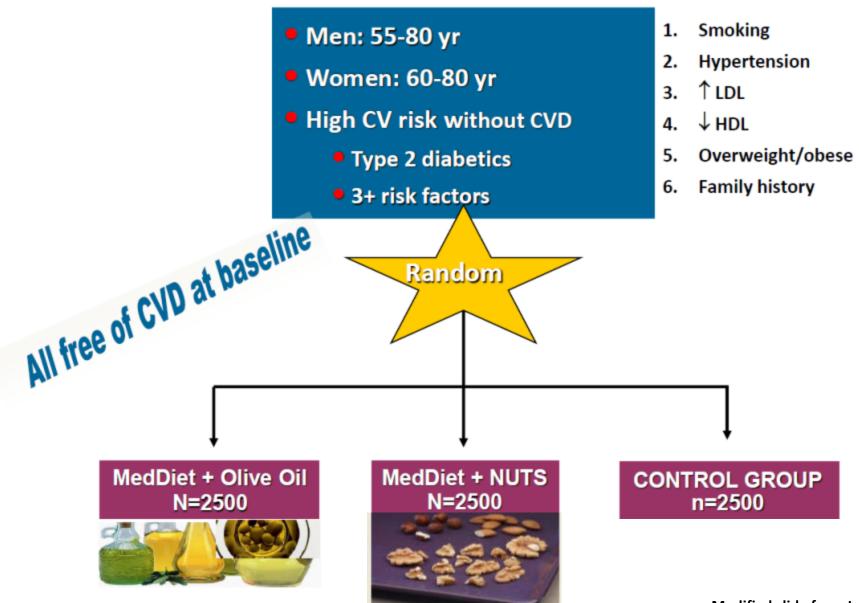
Х В

Liu et al. Unpublished data.

COMIT Conclusion - Body Composition

- A diet very high in MUFA reduced visceral adipose tissue (i.e., belly fat).
- A decrease in visceral adipose tissue resulted in a decrease in triglycerides and blood pressure.

N Engl J Med. 2013;368:1279-1290.


ORIGINAL ARTICLE

Primary Prevention of Cardiovascular Disease with a Mediterranean Diet

Ramón Estruch, M.D., Ph.D., Emilio Ros, M.D., Ph.D., Jordi Salas-Salvadó, M.D., Ph.D., Maria-Isabel Covas, D.Pharm., Ph.D., Dolores Corella, D.Pharm., Ph.D., Fernando Arós, M.D., Ph.D., Enrique Gómez-Gracia, M.D., Ph.D.,
Valentina Ruiz-Gutiérrez, Ph.D., Miquel Fiol, M.D., Ph.D., José Lapetra, M.D., Ph.D.,
Rosa Maria Lamuela-Raventós, D.Pharm., Ph.D., Lluís Serra-Majem, M.D., Ph.D.,
Xavier Pintó, M.D., Ph.D., Josep Basora, M.D., Ph.D., Miguel Angel Muñoz, M.D., Ph.D.,
José V. Sorlí, M.D., Ph.D., José Alfredo Martínez, D.Pharm, M.D., Ph.D., and
Miguel Angel Martínez-González, M.D., Ph.D., for the PREDIMED Study Investigators*

PREDIMED TRIAL: DESIGN

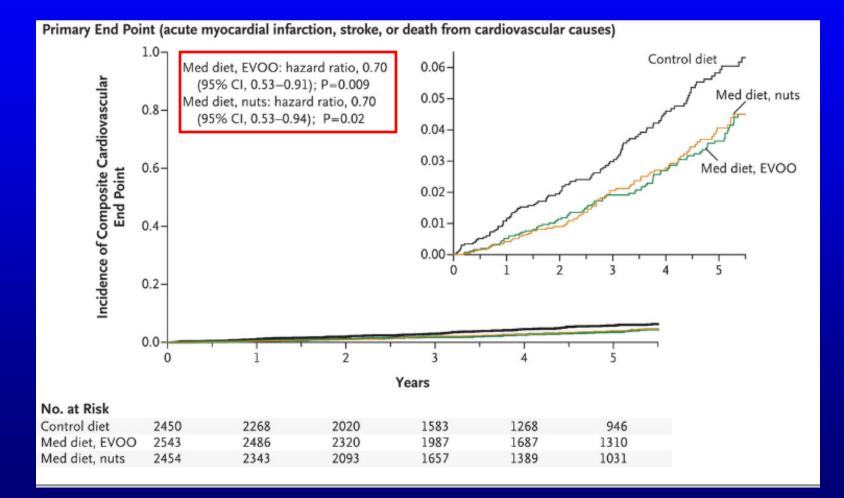
Modified slide from J. Sabate.

Difference Between MeDiet + EVOO and MeDiet +Nuts

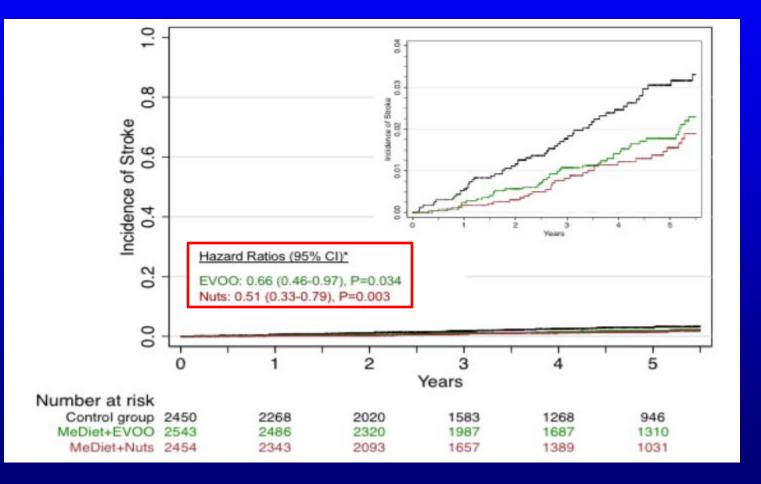
MeDiet + EVOO

EVOO (1L/week/family = 50 g/day)

MeDiet + Nuts



Walnuts 15 g/d Almonds 7.5 g/d Hazelnuts 7.5 g/d


PREDIMED: Intake of Energy and Nutrients at the End of the Trial by Study Group

	Variable	MeDiet + EVOO	MeDiet + Nuts	Control
	Energy, kcal	2172	2229	1960
	CHO, % E	40	40	44
\rightarrow	Fat, % E	41	42	37
\rightarrow	SFA, % E	9	9	9
\rightarrow	MUFA, % E	22	21	19
	PUFA, % E	6	8	6
	Linoleic acid, g/d	12	16	10
	ALA, g/d	1.3	1.5	1.3
	Marine n-3 FA, g/d	0.9	0.8	0.7

PREDIMED Trial: The Incidence of Acute Myocardial Infarction, Stroke, and Death from Cardiovascular Causes by Treatment

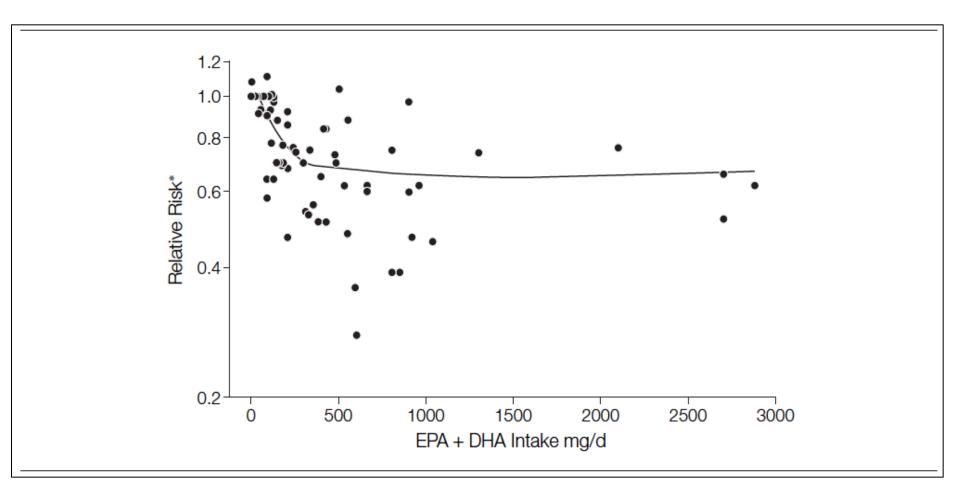
Figure S6. Kaplan-Meier Estimates of Incidence of the Significant Separate Component (Stroke) of the Primary Endpoint

α-Linolenic Acid (ALA) and Risk of Cardiovascular Disease: A Systematic Review and Meta-Analysis

An Pan, Mu Chen, Rajiv Chowdhury, Jason HY Wu, Qi Sun, Hannia Campos, Dariush Mozaffarian, and Frank B Hu

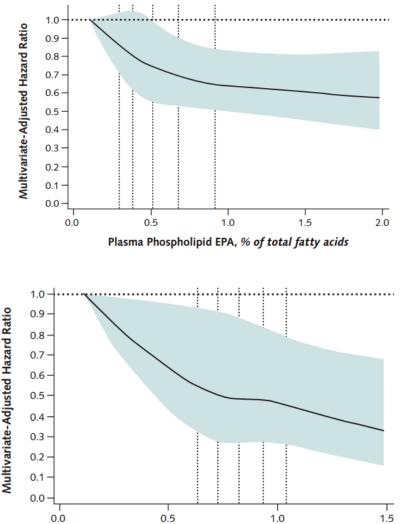
Conclusions: In observational studies, <u>higher ALA (18:3n3)</u> <u>exposure is associated with a moderately lower risk of CVD</u>. The results were <u>generally consistent for dietary and biomarker</u> <u>studies</u> but were <u>not statistically significant for biomarker studies</u>. However, the high unexplained heterogeneity highlights the need for additional well-designed observational studies and large randomized clinical trials to evaluate the effects of ALA on CVD.

27 papers included:


16 Diet & CVD 14 Biomarker & CVD

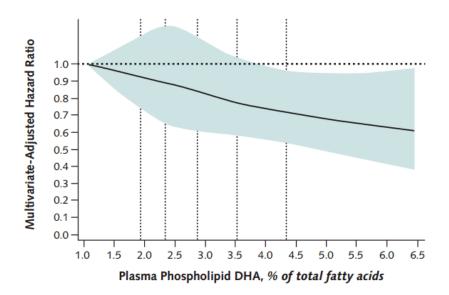
RR of ALA Intake and Risk of Total CVD Stratified by Dietary Intake and Biomarker Concentration

P	eference	Outcome	RR (95% CI)	%Weig
4	Dietary ALA intake as the exposure			
	Dolecek 1992 (13)	Fatal CHD	0.71 (0.48, 1.03)	3.48
	Ascherio 1996 (14)	Total MI		4.82
	Pietinen1997 (15)	Total MI	• 0.97 (0.85, 1.11)	5.22
	Hu 1999 (16)	Fatal IHD	0.63 (0.41, 0.95)	3.21
	Oomen 2001 (17)	Total CAD	1.68 (0.86, 3.29)	1.91
	He 2002 (18)	Stroke		4.24
	Albert 2005 (19)	Nonfatal MI	1.07 (0.94, 1.22)	5.23
	Laaksonen 2005 (37)	Fatal CVD	0.63 (0.33, 1.21)	1.99
	Lopes 2007 (38)	Nonfatal MI	0.66 (0.42, 1.04)	2.99
	Campos 2008 (39)	Nonfatal MI		4.58
	de Goede 2011 (20, CHD)	Total CHD	1.01 (0.73, 1.40)	3.84
	de Goede 2011 (20, stroke)	Stroke	0.71 (0.50, 1.03)	3.57
	Vedtofte 2011 (21, M)	Total IHD	0.83 (0.56, 1.24)	3.32
	Vedtofte 2011 (21, F)	Total IHD	1.04 (0.58, 1.86)	2.29
	Larsson 2012 (22)	Stroke	1.07 (0.92, 1.25)	5.09
	Subtotal (I-squared = 49.0%, p = 0.	017)	0.90 (0.81, 0.99)	55.78
	ALA biomarker level as the exposur			
	Simon 1995 (23)	Total CHD	0.72 (0.37, 1.41)	1.91
	Simon 1995 (24)	Stroke -	0.49 (0.24, 1.00)	1.75
	Tornwall 1996 (25)	Nonfatal MI	1.05 (0.66, 1.67)	2.92
	Gullar 1999 (26)	Nonfatal MI	0.76 (0.41, 1.40)	2.14
	Pedersen 2000 (27)	Nonfatal MI	1.84 (0.45, 7.41)	0.60
	Erkkila 2003 (28)	Total CVD	0.81 (0.34, 1.93)	1.33
	Kark 2003 (29)	Nonfatal MI	0.93 (0.53, 1.63)	2.39
	Lemaitre 2003 (30, fatal MI)	Fatal MI	0.24 (0.05, 1.23)	0.45
	Lemaitre 2003 (30, nonfatal MI)	Nonfatal MI	1.09 (0.56, 2.12)	1.94
	Wang 2003 (31)	Total CHD		3.22
	Laaksonen 2005 (37)	Fatal CVD	1.19 (0.63, 2.26)	2.03
	Wiberg 2006 (32)	Stroke	1.04 (0.84, 1.31)	4.63
	Lopes 2007 (38)	Nonfatal MI	0.33 (0.09, 1.26)	0.65
	Campos 2008 (39)	Nonfatal MI	0.57 (0.43, 0.77)	4.08
	Warensjo 2008 (33)	Fatal CVD	1.23 (1.00, 1.52)	4.74
	Lemaitre 2009 (34)	SCA	1.83 (1.16, 2.90)	2.94
	Shearer 2009 (35)	ACS	0.08 (0.04, 0.17)	1.83
	Khaw 2012 (36)	Total CHD	0.96 (0.77, 1.19)	4.67
	Subtotal (I-squared = 79.8%, p = 0.		0.80 (0.63, 1.03)	44.22
C	overall (I-squared = 71.3%, p = 0.000)	0.86 (0.77, 0.97)	100.00


Pan et al. Am J Clin Nutr 2012;96:1262-1273.

Relationship between Intake of Fish or Fish Oil and Relative Risks of CHD Death in Prospective Cohort and RCTs

Between 0 and 250 mg/day, mortality risk was decreased by 14.6%; between 250 and 500 mg/day, risk was decreased by 25%.


Relationship of Plasma Phospholipid EPA, DPA, and DHA Levels with Total Mortality - The Cardiovascular Health Study

Plasma Phospholipid DPA, % of total fatty acids

Higher circulating individual and total n3-PUFA levels are associated with lower total mortality, especially CHD death, in older adults (> 65 yr) not taking supplements:

- 0.83 for EPA (95% CI, 0.71 to 0.98; P for trend = 0.005),
- 0.77 for DPA (CI, 0.66 to 0.90; *P* for trend = 0.008),
- 0.80 for DHA (CI, 0.67 to 0.94; *P* for trend = 0.006), and
- 0.73 for total n3-PUFAs (CI, 0.61 to 0.86; P for trend < 0.001).

Omega-3 fatty acid treatment (O1, O2, or O4), dose-dependently and significantly reduced triglyceride levels

10 0 -10 -20 -30 P=0.021 by ANOVA -40 ΡΙ 02 04 **O1**

%Change in Triglycerides

42 patients on placebo (Pl)
44 patients on omega-3 FA 1 g (O1),
43 patients on omega-3 FA 2 g (O2)
44 patients on omega-3 FA 4 g (O4)

Oh et al. Int J Cardiol. 2014;176(3):696-702.

Emerging Science on Fatty Acids and Health

- Stearidonic acid (SDA; C18:4n-3) precursor of EPA
- Palmitoleic acid (C16:1n-7) mixed results on cardiometabolic risk
- MCTs benefits on body weight & weight loss
- Pentadecanoic acid (C15:0), heptadecanoic acid (C17:0), and trans palmitoleate (trans C16:1n-7) in dairy fat - emerging evidence that certain dairy products might reduce CVD risk
- Coconut oil increases TC, LDL-C and HDL-C

SDA-enhanced soybean oil can significantly improve an emerging marker of cardiovascular health, the omega-3 index (RBC EPA+DHA)

		RBC EPA			RBC DPA		F	RBC DHA	A	Omega-3 Index			
						9	%						
	Ref (17)	Ref (15)	Ref (16)	Ref (17)	Ref (15)	Ref (16)	Ref (17)	Ref (15)	Ref (16)	Ref (17)	Ref (15)	Ref (16)	
Base- line	0.96	0.42	0.47	3.16	n/r	2.6	4.23	3.59	3.87	5.19	4.02	4.34	
End	1.44	1.21	1.05	3.46	n/r	3.49	3.96	3.59	3.64	5.4	4.8	4.69	
Δ	0.48	0.79	0.58	0.3		0.89	-0.27	0	-0.23	0.21	0.78	0.35	
%Δ	50	188	123	9		34	-6	0	-6	4	19	8	

SDA doses, durations of treatment, and sample sizes (for the SDA treatment groups) were: (17)=1 g/d (mean) for 6 weeks, n= 15 (James et al. Am J Clin Nutr. 2003;77:1140–1145) (15)=3.7 g/d for 16 weeks, n=11 (Harris et al. Lipids. 2008;43:805–811) (16)=4.2 g/d for 12 weeks, n= 54 (Lemke et al. Am J Clin Nutr. 2010;92:766–775)

Multivariate-Adjusted Relationships of **Trans-Palmitoleic** Acid With Metabolic Risk Factors

Factor		Quintiles of Trans-Palmitoleic Acid Level									
	1	2	3	4	5	for Trend					
Median total fatty acid level, %	0.13	0.16	0.18	0.21	0.25						
Adiposity											
Body mass index, kg/m ²	26.7	27.0	26.8	26.9	26.2	0.058					
Waist circumference, cm	97.7	98.4	97.2	97.4	96.0†	0.009					
Blood lipids											
LDL cholesterol level						0.63					
mmol/L	3.26	3.32	3.29	3.26	3.34						
mg/dL	126	128	127	126	129						
HDL cholesterol level						0.043					
mmol/L	1.37	1.35	1.35	1.39	1.40						
mg/dL	53.0	52.0	52.1	53.7	54.0						
Triglyceride level						< 0.001					
mmol/L	1.66	1.51	1.45	1.36	1.34						
mg/dL	147	134‡	128§	120§	119§						
Total cholesterol-HDL cholesterol ratio	4.3	4.3	4.2	4.1‡	4.1‡	<0.001					
Inflammation											
C-reactive protein level, nmol/L	27.6	26.7	24.8	25.7	23.8	0.050					
Fibrinogen level, µmol/L	9.3	9.6‡	9.7‡	9.8†	9.6‡	0.006					
Glucose-insulin homeostasis											
Fasting glucose level						0.103					
mmol/L	5.7	5.8	5.7	5.7	5.7						
mg/dL	104	105	103	103	103						
Fasting insulin level, pmol/L	78.5	76.4	74.3	70.8‡	68.1§	< 0.001					
Insulin resistance, units	3.0	2.9	2.8†	2.7‡	2.5§	< 0.001					

Mozaffarian et al. Ann Intern Med. 2010;153(12):790-799.

Circulating palmitoleic acid and risk of metabolic abnormalities and new-onset diabetes¹⁻⁴

Dariush Mozaffarian, Haiming Cao, Irena B King, Rozenn N Lemaitre, Xiaoling Song, David S Siscovick, and Gökhan S Hotamisligil

- Cardiovascular Health Study 3630 U.S. men and women
- Higher palmitoleic acid concentrations were associated with:
 - Lower LDL-C
 - Higher HDL-C
 - Lower total cholesterol:HDL-C
 - Lower fibrinogen
 - Higher TG
- Higher adiposity was associated with higher palmitoleic acid concentrations
- Conclusion: Circulating palmitoleic acid is robustly associated with multiple metabolic risk factors but in mixed directions for health

Purified palmitoleic acid for the reduction of high-sensitivity C-reactive protein and serum lipids: A double-blinded, randomized, placebo controlled study

Journal of Clinical Lipidology

Adam M. Bernstein, MD, ScD*, Michael F. Roizen, MD, Luis Martinez, MD, MPH

 This was the first randomized controlled trial of purified palmitoleic acid supplementation in humans. It was 30-day parallel, double-blinded, randomized, placebo-controlled study with 60 healthy participants.

CONCLUSIONS: Purified palmitoleic acid may be useful in the treatment of hypertriglyceridemia with the beneficial added effects of decreasing LDL and hs-CRP and raising HDL.

Meta-analysis of RCTs comparing dietary MCTs with a longer-chain triglyceride (control) shows a favorable effect of MCT intervention on body weight (kg).

	r	ИСТ		Co	ontrol			Mean Difference		Mean Difference
Study or Subgroup	Mean [kg]	SD [kg]	Total	Mean [kg]	SD [kg]	Total	Weight	IV, Fixed, 95% CI [kg]	Year	IV, Fixed, 95% CI [kg]
Yost & Eckel (34)	-9.7	3.39	8	-8.6	4.53	8	0.5%	-1.10 [-5.02, 2.82]	1989	
Temme et al *(28)	0	2.09	10	0	2.57	19	2.7%	0.00 [-1.74, 1.74]	1997	
Temme et al **(28)	0	2.09	11	0	2.22	20	3.3%	0.00 [-1.57, 1.57]	1997	
Krotkiewski (19)	-8.5	4.76	22	-8.1	5.02	22	1.0%	-0.40 [-3.29, 2.49]	2001	
Tsuji et al #(33)	-3.3	2.32	15	-3.08	1.85	7	2.5%	-0.22 [-2.02, 1.58]	2001	
Tsuji et al ##(33)	-6.12	2.55	26	-4.78	2.19	30	5.2%	-1.34 [-2.59, -0.09]	2001	
Matsuo et al (30)	1.83	0	7	0.91	0	6		Not estimable	2001	
Feldheim (36)	-0.6	2.2	35	-1.1	2.2	35	7.7%	0.50 [-0.53, 1.53]	2001	
St-Onge et al (9)	-1.03	1.25	25	-0.62	1.45	25	14.5%	-0.41 [-1.16, 0.34]	2003	
Nosaka et al (31)	-4.2	2.8	33	-2.9	2	31	5.8%	-1.30 [-2.49, -0.11]	2003	
St-Onge et al (10)	-0.87	0.66	17	-0.84	0.91	17	28.6%	-0.03 [-0.56, 0.50]	2003	+
Kasai et al (4)	-4.5	2.53	40	-3.3	2.59	42	6.7%	-1.20 [-2.31, -0.09]	2003	
Roynette et al (35)	-1.46	1.92	23	-1.17	1.92	23	6.6%	-0.29 [-1.40, 0.82]	2008	
St-Onge & Bosarge (32)	-3.16	1.96	16	-1.41	1.9	15	4.4%	-1.75 [-3.11, -0.39]	2008	
Xue et al (29)	-2.1	2.6	51	-0.7	1.9	50	10.4%	-1.40 [-2.29, -0.51]	2009	
Total (95% CI)			339			350	100.0%	-0.51 [-0.80, -0.23]		(♦)
Heterogeneity: Chi ² = 19.8	87, df = 13 (P	= 0.10); l ²	= 35%						_	-4 -2 0 2 4
Test for overall effect: Z =	3.51 (P = 0.0	004)								-4 -2 0 2 4 Favors MCT Favors control

*Oleic acid as control. **Myristic acid as control.

Meta-analysis of RCTs comparing dietary MCTs with a longer-chain triglycerides (control) shows a favorable effect of MCT intervention on waist and hip circumference (cm).

	1	NCT		Co	ontrol			Mean Difference			Mean D	ifference	
Study or Subgroup	Mean [cm]	SD [cm]	Total	Mean [cm]	SD [cm]	Total	Weight	IV, Fixed, 95% CI [cm]	Year		IV, Fixed,	95% CI [cr	n]
2.1.1 Waist circumferend	ce												
Tsuji et al #(33)	-3.71	2.71	15	-2.4	1.59	7	10.4%	-1.31 [-3.12, 0.50]	2001			+	
Tsuji et al ##(33)	-5.67	2.55	26	-3.74	2.74	30	17.7%	-1.93 [-3.32, -0.54]	2001				
Kasai et al (4)	-4	2.53	40	-2.8	2.59	42	27.7%	-1.20 [-2.31, -0.09]	2003		-	-	
Nosaka et al (31)	-5.1	3.1	33	-3.3	1.9	31	21.8%	-1.80 [-3.05, -0.55]	2003				
St-Onge & Bosarge (32)	-2.4	3.1	15	-2.5	2.99	14	6.9%	0.10 [-2.12, 2.32]	2008			•	
Xue et al (29)	-2.6	3.5	51	-0.9	4.1	50	15.4%	-1.70 [-3.19, -0.21]	2009				
Subtotal (95% CI)			180			174	100.0%	-1.46 [-2.04, -0.87]			•		
Heterogeneity: Chi ² = 2.97	7, df = 5 (P = 0	0.71); I ² = 0	%								\sim		
Test for overall effect: Z =	4.50 (F < 0.00	0001)											
2.1.2 Hip circumference			10			10	17.00						
2.1.2 Hip circumference Kasai et al (4)	-2.9	1.9	40	-2	1.3	42	47.2%	-0.90 [-1.61, -0.19]			+		
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31)	-2.9 -2.9	1.9 2.1	33	-2.3	1.5	31	29.9%	-0.60 [-1.49, 0.29]	2003		+		
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29)	-2.9	1.9	33 51			31 50	29.9% 22.9%	-0.60 [-1.49, 0.29] -0.80 [-1.82, 0.22]	2003		+++		
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29) Subtotal (95% CI)	-2.9 -2.9 -1.5	1.9 2.1 2.5	33 51 124	-2.3	1.5	31	29.9%	-0.60 [-1.49, 0.29]	2003				
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29)	-2.9 -2.9 -1.5	1.9 2.1 2.5	33 51 124	-2.3	1.5	31 50	29.9% 22.9%	-0.60 [-1.49, 0.29] -0.80 [-1.82, 0.22]	2003				
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29) Subtotal (95% CI)	-2.9 -2.9 -1.5 7, df = 2 (P = 0	1.9 2.1 2.5 0.87); I ² = 0	33 51 124	-2.3	1.5	31 50	29.9% 22.9%	-0.60 [-1.49, 0.29] -0.80 [-1.82, 0.22]	2003				
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29) Subtotal (95% CI) Heterogeneity: Chi ² = 0.27	-2.9 -2.9 -1.5 7, df = 2 (P = 0	1.9 2.1 2.5 0.87); I ² = 0	33 51 124	-2.3	1.5	31 50	29.9% 22.9%	-0.60 [-1.49, 0.29] -0.80 [-1.82, 0.22]	2003	1			
2.1.2 Hip circumference Kasai et al (4) Nosaka et al (31) Xue et al (29) Subtotal (95% CI) Heterogeneity: Chi ² = 0.27	-2.9 -2.9 -1.5 7, df = 2 (P = 0	1.9 2.1 2.5 0.87); I ² = 0	33 51 124	-2.3	1.5	31 50	29.9% 22.9%	-0.60 [-1.49, 0.29] -0.80 [-1.82, 0.22]	2003	-1-4	-2		

Association between Dairy Food Consumption and CVD

- Dairy fat or some other component may protect persons at increased risk of having a first MI (Biong et al., *Eur J Clin Nutr*. 2006;60:236-244).
- In the Swedish Mammography Cohort trial, total cheese intake was inversely associated with MI [HR: 0.74(95% CI: 0.60, 0.91)]. Butter was positively associated with MI risk (HR: 1.34(95% CI: 1.02, 1.75) (Patterson et al., J Nutr. 2013;143:74-79).
- In the EPIC-Norfolk Cohort, C15:0 and C17:0 were inversely associated with CVD incidence (OR 0.73, Cl 0.59-0.91) (Khaw et al. *PLoS Med.* 2012;9(7). E1001255).

Coconut Oil and Health

- Coconut Oil Claims
 - Protection against heart disease

- Lose body fat, especially from your abdomen or trunk
- May prevent and even treat cancer, diabetes, and HIV/AIDS
- Boost brain function in people with Alzheimer's disease
- Stimulate thyroid function
- Fight off bacterial, viral, and yeast infections

There is little evidence to support any of these claims.

What Does Coconut Oil Research Reveal? BODY FAT LOSS?

- There are very few human studies on coconut oil and body fat loss.
- A small pilot study showed that obese men (n = 20) consuming virgin coconut oil (30 ml/d) had a significant reduction in waist circumference over six weeks. However, there was no control group.(*Liau et al. ISRN Pharmacol. 2011;2011:949686.*)
- A randomized, double-blind clinical study that compared supplementation with coconut versus soybean oil (30 ml/d) among obese women (n = 20 for each group) consuming low-calorie diets and walking 50 minutes/d found no differences in body weight between groups, but the coconut oil group had a significant decrease in waist circumference. (Assunção et al. Lipids. 2009:44;593-601.)

What Does Coconut Oil Research Show? Effects on Lipids and Lipoproteins

- "There are few published studies in humans that have examined the effect of coconut oil or virgin coconut oil on lipids/lipoproteins, and all were conducted outside the U.S."
- The research shows that the SFAs in coconut oil increase TC, LDL-C and HDL-C. The increase in HDL-C is of uncertain clinical relevance, but the increase in LDL-C would be expected to have an adverse effect on ASCVD risk.
- The NLA Expert Panel consensus view is that, if coconut oil is used it is recommended that it be used within the context of a healthy dietary pattern. One tablespoon of coconut oil contains 11.7 g of SFA. This would contribute a significant portion of the recommended SFA daily.

Recommended Dietary Patterns: How Do Fats and Oils Fit?

DGAC 2015 Composition of the Healthy Vegetarian and Healthy Med-style Patterns, and Healthy US Patterns, at 2000 kcals

Food Group/subgroup (units)	Healthy US Patterns	Healthy Vegetarian Patterns	Healthy Med- style Patterns
Fruits (cup eq)	2	2	2.5
Vegetables (cup eq)	2.5	2.5	2.5
Dark Green	1.5/wk	1.5/wk	1.5/wk
Red/Orange	5.5/wk	5.5/wk	5.5/wk
Starchy	5/wk	5/wk	5/wk
Legumes	1.5/wk	3/wk*	1.5/wk
Other	4/wk	4/wk	4/wk
Grains (oz eq)	6	6.5	6
Whole	3	3.5	3
Refined	3	3	3
Dairy (cup eq)	3	3	2
Protein Foods (oz eq)	5.5	3.5	6.5
Meats (red and processed)	12.5/wk		12.5/wk
Poultry	10.5/wk		10.5/wk
Seafood	8/wk		15/wk
Eggs	3/wk	3/wk	3/wk
Nuts/seeds	4/wk	7/wk	4/wk
Processed Soy (incl. tofu)	0.5/wk	8/wk	0.5/wk
Oils (grams)	27	27	27
Solid fats limit (grams)	18	21	17
Added sugars limit (grams)	30	36	29

Summary

- Dietary Guidelines advise decreasing SFA and TFA. DGAC 2015 recommends replacing them with unsaturated fat, particularly PUFA.
- MUFA beneficially affects cardiometabolic risk and decreases visceral adiposity; evidence base is growing.
- Exciting new research frontiers for "minor" dietary fatty acids and health There is a lot to learn.

Call to Action

- Keep SFA low
- Replace SFA calories with unsaturated fatty acids
- Assure that both MUFA and PUFA (both n-6 and n-3, including ALA, EPA and DHA) are consumed
- Major food sources of unsaturated fatty acids are liquid vegetable oils, nuts and seeds, and seafood
 - Other less predominant food sources are soy, avocado, algae

Thank you