Berberine Research and Clinical Applications

Research Highlights (see references below)

- Berberine is a natural alkaloid found in a wide variety of herbs with antimicrobial, anti-inflammatory, and antioxidative effects.
- ✓ Berberine exerts its metabolic and cardioprotective effects by regulating multiple mechanisms involving glucose and insulin metabolism, lipid metabolism, endothelial function, and gut microbiota modulation.
- ✓ The clinical efficacy and safety of berberine has been demonstrated in multiple human clinical trials.

Introduction

Berberine is a naturally occurring compound found in the stem, root, and bark of several plants and herbs, such as Amur cork tree (*Phellodendron amurense*) and Huanglian (*Coptis chinensis* Franch). Berberine has been used in traditional Chinese and Ayurvedic medicine for centuries for the treatment of indigestion, dysentery, and a wide range of infections.¹ In the 1980s, the hypoglycemic effect of berberine was discovered.² Since then, a robust amount of research on this alkaloid's pharmacological effects have been elucidated, including its antimicrobial, anti-inflammatory, and antioxidative properties as well as its hypoglycemic action and beneficial effects on lipid metabolism.^{1,3}

Mechanisms of action

Berberine exerts its metabolic and cardioprotective effects by regulating multiple molecular targets and pathways. For example:

Glucose and insulin metabolism

- Berberine activates adenosine monophosphate kinase (AMPK), a key regulator in energy metabolism in adipocytes and muscle cells, leading to improved insulin sensitivity, reduced fat accumulation, and energy storage.⁴
- Berberine upregulates the expression of insulin-receptor gene through activation of protein kinase C (PKC) in the liver and muscle cells, leading to improved cellular glucose utilization and reduced insulin resistance.⁵

Lipid metabolism

- Berberine increases the expression of the liver low-density lipoprotein receptor (LDLR) gene by stabilizing its mRNA, which leads to improved clearance of LDL-cholesterol.⁶
- The pro-protein convertase subtilisin/kexin type 9 (PCSK9) downregulates LDLR by promoting degradation of LDLR. Berberine decreases PCSK9 mRNA and protein levels, thereby blocking the PCSK9-mediated LDLR degradation.⁷

Endothelial function

- High oxidative stress and low nitric oxide production due to dysregulated glucose, lipid metabolism, and proinflammatory factors contribute to endothelial dysfunction.⁸ Via activation of AMPK, berberine increases endothelial nitric oxide synthase (eNOS) expression and suppresses oxidative stress.⁹
- Berberine reduces oxidized LDL (oxLDL)-stimulated production of reactive oxygen species and monocyte adhesion to endothelial cells via suppression of vascular cell adhesion molecule-1 (VCAM-1) and intercellular adhesion molecule-1 (ICAM-1).¹⁰

Gut microbiota modulation

- Berberine increases the amount of gut bacteria that produce shortchain fatty acids (SCFAs). Increased levels of SCFAs contribute to numerous benefits for the host.^{11,12}
- Berberine increases abundance of Akkermansia spp. (which regulates inflammation and gut barrier integrity) and decreases endotoxemia as well as reduces intestinal and arterial proinflammatory mediators in mice fed a high-fat diet.¹³

Clinical Applications at a Glance

The health benefits of berberine have been studied in many different areas. Key human clinical studies involving berberine are summarized below.

Health Condition (Sample Size)	Study Design; Berberine Dosage	Main Findings
T2D (n=36) ¹⁴	Pilot trial; 500 mg t.i.d. or metformin (500 mg t.i.d.) for 3 mo	 The hypoglycemic effect (reduction in HbA1c, fasting blood glucose, postprandial blood glucose and plasma TG) of berberine was similar to that of metformin
T2D and dyslipidemia (n=116) ¹⁵	DB RCT; 500 mg b.i.d. or placebo for 3 mo	Significant reductions in fasting plasma glucose, postprandial plasma glucose, HbA1c, TG, total cholesterol, and HDL-C vs. placebo
T2D (n=97) ¹⁶	RCT; 1,000 mg/d or metformin (1.5 g/d) or rosiglitazone (4 mg/d) for 2 mo	 Reductions in fasting blood glucose, HbA1c, and TG vs. baseline Hypoglycemic effects similar to those of metformin and rosiglitazone
T2D (n=2,313) ¹⁷	Review of 28 clinical trials; 300-3,000 mg/d (majority 900-1,800 mg/d) for 14-730 d (majority 30-90 d); control groups varied (lifestyle, metformin, simvastatin, sulfonylurea, or placebo)	 Pooled results showed reductions in fasting blood glucose, postprandial blood glucose, and HbA1c vs. control
Hypercholesterolemia but low CV risk (n=144) ¹⁸	DB RCT; after 6 mo diet (600 kcal daily deficit) and exercise (20-30 min, 3-4 times/wk), 500 mg b.i.d. or placebo for 3 mo; after a 2-mo washout period, 500 mg b.i.d. or placebo for additional 3 mo	 6 mo run-in reduced body weight and BMI as expected The first 3 mo berberine reduced total cholesterol and LDL-C vs. placebo Lipids worsened during washout period as expected Resumed berberine for 3 mo reduced total cholesterol, LDL-C, and TG and increased HDL-C vs. placebo
Hyperlipidemia (n=874) ¹⁹	Review of 11 RCTs; 900-1,500 mg/d for 8-52 wk (majority 8-12 wk); control groups varied (lifestyle, metformin, simvastatin, sulfonylurea, or placebo)	 Pooled results showed reductions in total cholesterol, TG, and LDL-C and increases in HDL-C vs. control
Dyslipidemia (n=2,147) ²⁰	Meta-analysis of 16 RCTs	 Pooled results showed reductions in total cholesterol, LDL-C, and TG and increases in HDL-C vs. control
Metabolic syndrome (n=80) ²¹	Clinical trial; receiving 4 tablets (dose not available) t.i.d. or regular therapy for 1 mo	 Reductions in fasting blood glucose, postprandial blood glucose, insulin resistance index, and blood lipid indexes vs. regular therapy Reductions in the inflammatory markers, hs-CRP, IL-6, and TNF-α vs. regular therapy
PCOS and insulin resistance (n=89) ²²	RCT; all received cyproterone acetate, then randomly assigned to 500 mg t.i.d. or metformin 500 mg t.i.d., or placebo for 3 mo	 Reductions in WC, WHR, total cholesterol, TG, and LDL-C, and increases in HDL-C and SHBG vs. metformin Reductions in WHR, fasting blood glucose, fasting insulin, HOMA-IR, total cholesterol, LDL-C, and TG and increases in HDL-C and SHBG vs. placebo
PCOS undergoing IVF treatment (n=150) ²³	RCT; 500 mg t.i.d. or metformin 500 mg t.i.d. or placebo for 3 mo before ovarian stimulation	 Reductions in total testosterone, free androgen index, fasting glucose, fasting insulin, and HOMA-IR and increases in SHBG vs. placebo Treatment before the IVF cycle increased the pregnancy rate and reduced the incidence of severe ovarian hyperstimulation syndrome
PCOS and insulin resistance (n=735) ²⁴	Meta-analysis of 9 RCTs; 900-1,500 mg/d or metformin 500-1,500 mg/d or cyproterone 1 tablet/d for 3 mo	 Effects on BMI, HOMA-IR, total cholesterol, TG, and LDL-C similar to those of metformin Combination of berberine with cyproterone was more effective than cyproterone alone in reducing WHR, HOMA-IR, total cholesterol, TG, and LDL-C and increasing HDL-C
NAFLD (n=501) ²⁵	Meta-analysis of 6 RCTs; 300-500 mg t.i.d. for 12-16 wk	Reductions in total cholesterol, LDL-C, HbA1c, postprandial glucose, and ALT vs. control
Acute coronary syndrome following PCI (n=130) ²⁶	Clinical trial; receiving 300 mg t.i.d. plus standard therapy or standard therapy alone for 1 mo	Reductions in the inflammatory markers, MMP-9, ICAM-1, and VCAM-1 vs. standard therapy
IBS-D (n=196) ²⁷	RCT; 400 mg/d or placebo for 8 wk followed by a 4-wk washout	 Reduction of diarrhea frequency, abdominal pain frequency, and urgent need for defecation frequency vs. placebo

ALT= alanine transaminase; BMI= body mass index; CV= cardiovascular; d= day(s); DB= double-blind; HbA1c= hemoglobin A1c; HDL-C= high-density lipoprotein cholesterol; hs-CRP= high-sensitivity C-reactive protein; HOMA-IR= homeostatic model assessment of insulin resistance; ICAM-1= intercellular adhesion molecule-1; IL-6= interleukin-6; IBS-D= diarrhea predominant irritable bowel syndrome; IVF= *in vitro* fertilization; LDL-C= low-density lipoprotein cholesterol; MMP-9= matrix metalloproteinase-9; mo= month(s); NAFLD= nonalcoholic fatty liver disease; PCI= percutaneous coronary intervention; PCOS= polycystic ovary syndrome; RCT= randomized controlled trial; SHBG= sex hormone-binding globulin; T2D= type 2 diabetes; TG= triglycerides; TNF-α= tumor necrosis factor-α; VCAM-1= vascular cell adhesion molecule-1; WC= waist circumference; WHR= waist-to-hip ratio; wk= week(s)

Safety

- The safety of berberine has been demonstrated in multiple meta-analyses involving subjects with dyslipidemia, hyperlipidemia, or type 2 diabetes; no severe adverse events associated with berberine were reported.^{19,20,28}
- In a meta-analysis involving women with polycystic ovary syndrome and insulin resistance, the adverse event profile of berberine is less severe than that of metformin.²⁴
- The main complaints associated with berberine consumption were gastrointestinal, such as diarrhea, constipation, and flatulence.^{14,19}

Potential drug interactions

- Two weeks of berberine administration (300 mg t.i.d.) decreased cytochrome P450 (CYP)2D6, CYP2C9, and CYP3A4 activities in 17 healthy male subjects, although variability among subjects was relatively large.²⁹
- Combined administration of berberine (300 mg/d) with simvastatin (40 mg/d) or with fenofibrate (200 mg/d) for seven days did not result in clinically obvious pharmacokinetic interactions.³⁰
- Potential interaction between berberine and metformin has not been studied in humans, although metformin is not metabolized by CYP enzymes and is excreted unchanged in the urine.³¹
- One study found berberine increased bioavailability of P-glycoprotein substrates digoxin and cyclosporine in rats.³² However, the effect of berberine on P-glycoprotein expression/activity depends on the cell line studied.³³ Therefore, potential interactions between berberine and P-glycoprotein substrates in humans remain to be studied.

References

- 1. Neag MA et al. Front Pharmacol. 2018;9:557.
- 2. Ni YX. Zhong Xi Yi Jie He Za Zhi. 1988;8(12):711-713, 707.
- 3. Feng X et al. Theranostics. 2019;9(7):1923-1951.
- 4. Lee YS et al. Diabetes. 2006;55(8):2256-2264.
- 5. Kong WJ et al. Metabolism. 2009;58(1):109-119.
- 6. Abidi P et al. Arterioscler Thromb Vasc Biol. 2005;25(10):2170-2176.
- 7. Cameron J et al. Atherosclerosis. 2008;201(2):266-273.
- 8. Zhang M et al. Mediators Inflamm. 2013;2013:260464.
- 9. Wang Q et al. PLoS One. 2011;6(9):e25436.
- 10. Huang Z et al. Mol Med Rep. 2013;7(2):461-465.
- 11. Zhang X et al. PLoS One. 2012;7(8):e42529.
- 12. Wang Y et al. *Metabolism*. 2017;70:72-84.
- 13. Zhu L et al. Atherosclerosis. 2018;268:117-126.
- 14. Yin J et al. Metabolism. 2008;57(5):712-717.
- 15. Zhang Y et al. J Clin Endocrinol Metab. 2008;93(7):2559-2565.
- 16. Zhang H et al. Metabolism. 2010;59(2):285-292.
- 17. Liang Y et al. Endocr J. 2019;66(1):51-63.

- 18. Derosa G et al. Expert Opin Biol Ther. 2013;13(4):475-482.
- 19. Dong H et al. Planta Med. 2013;79(6):437-446.
- 20. Ju J et al. Phytomedicine. 2018;50:25-34.
- 21. Cao C et al. Exp Ther Med. 2019;17(4):3009-3014.
- 22. Wei W et al. Eur J Endocrinol. 2012;166(1):99-105.
- 23. An Y et al. Clin Endocrinol (Oxf). 2014;80(3):425-431.
- 24. Li MF et al. Evid Based Complement Alternat Med. 2018;2018:2532935.
- 25. Wei X et al. Evid Based Complement Alternat Med. 2016;2016:3593951.
- 26. Meng S et al. Clin Exp Pharmacol Physiol. 2012;39(5):406-411.
- 27. Chen C et al. Phytother Res. 2015;29(11):1822-1827.
- 28. Lan J et al. J Ethnopharmacol. 2015;161:69-81.
- 29. Guo Y et al. Eur J Clin Pharmacol. 2012;68(2):213-217.
- 30. Li G et al. Drug Des Devel Ther. 2019;13:129-139.
- 31. Gong L et al. Pharmacogenet Genomics. 2012;22(11):820-827.
- 32. Qiu W et al. Phytother Res. 2009;23(11):1553-1558.
- 33. Pang YN et al. PLoS One. 2014;9(11):e112937.

