
Treating HDL Dysfunction

Bioactives and lifestyle factors can improve HDL function. Here you'll see the mechanisms supported.

Endothelial effects:

- Vasodilation
- Flow-mediated vasodilation
- Reduction of ischemia
- · Endothelial nitric oxide production

PON -

C

Ŵ

。 () @

HDL composition effects:

- HDL-P
- HDL size/maturation
- HDL type
- Activity/expression/modification of:
- · PON
- · apoA-I
- · LCAT
- · CETP
- · SAA

Cholesterol loaded cell effects:

- †Increase cholesterol efflux
- ↓Reduce macrophage cytokine secretion
- ↓Reduce LDL oxidation
- ↓Reduce intima-media thickness
- ↓Reduce reactive oxygen species

Other abbreviations:

- ApoA-I: apolipoprotein A-I; responsible for cholesterol transport into HDL particle.
- CETP: cholesteryl ester transfer protein; serum protein involved in lipid exchange between lipoprotein classes. Inhibiting this protein has been a drug target action for reducing atherosclerosis.
- LCAT: lecithin-cholesterol acyltransferase; packs cholesterol into the HDL core.
 PON: paraoxonase; protects HDL particle
- SAA: Serum amyloid A; an acute-phase inflammatory protein that can displace functional proteins on HDL particles.

Liver effects:

Increased expression and activity of cholesterol transporters involved in accepting cholesterol from HDL particles

Pomegranate Clinical Evidence Related to HDL Function and Cardiovascular Health

Ingredient	Study Design	Main Findings
Pomegranate juice (130 mg/day GAE polyphenols) ¹	Clinical study in men with T2D (n=6); 50 mL/day for 4 wk	 Increased PON1 binding to HDL via reduction in oxidative stress
Pomegranate juice (130 mg/day total polyphenols) or pomegranate polyphenol extract (650 mg/day total polyphenols) ²	Clinical study in adults with T2D (n=30) ; 50 mL/day juice for 4 wk or 5 mL day extract for 6 wk	 Increased PON1 activity vs. baseline Increased PON1 protein binding to HDL vs. baseline Decreased serum oxidative stress vs. baseline
Pomegranate juice* ³	Clinical study in adults with T2D (n=50); 200 mL/day for 6 wk	 Increased PON activity vs. baseline Decreased serum MDA vs. baseline Improved serum fasting glucose, total cholesterol, and LDL cholesterol vs. baseline
Pomegranate juice*4	Clinical study in patients with CAS; 10 were supplemented for 1 year, and 5 continued for 3 years	 Increased serum PON1 activity vs. baseline Reduced intima-media thickness vs. baseline Reduced LDL oxidation at vs. baseline Increased serum total antioxidant status vs. baseline
Pomegranate juice (1.5 mM/day total polyphenols)⁵	Clinical study in healthy male volunteers (n=3 or 13); 50 mL/day for 2 wk	 Increased serum PON activity vs. baseline Reduced HDL oxidation <i>ex vivo</i> vs. baseline Increased plasma total antioxidant status vs. baseline
Pomegranate juice (1.5 mM/day total polyphenols) ⁶	Clinical study in healthy men (n=10) and men with T2D (n=10); 50 mL/day for 3 mo	 Increased serum PON1 activity vs. baseline Reduced serum lipid peroxides vs. baseline Reduced oxidative stress in macrophages vs. baseline
Pomegranate juice*7	RCT in subjects at moderate risk for CHD (n=289); 240 mL/day or placebo for up to 18 mo	 Slowed carotid intima-media thickness progression in subjects with increased oxidative stress
Pomegranate extract (650 mg/day GAE polyphenols) ⁸	RCT in hypercholesterolemic adults re- ceiving statin (n=23); 650 mg/day or placebo for 2 mo	Decreased oxidative stress in monocyte- derived macrophages vs. baseline
Pomegranate extract ⁹	RCT in individuals with BMI \ge 25 (n=48); 1,000 mg/day or placebo for 1 mo	 Decreased inflammatory biomarkers, serum hs-CRP and IL-6 Decreased lipid peroxidation biomarker, serum MDA Improved serum fasting glucose, insulin, total cholesterol, HDL cholesterol, and triglycerides
Pomegranate juice*10	RCT in patients who had CHD and MI (n=45); 240 mL/day or placebo for 3 mo	Decreased stress-induced ischemia
Concentrated pomegranate juice (350 mg/day total polyphenols) ¹¹	Clinical study in patients with T2D and hyperlipidemia (n=22); 40 g/day for 8 wk	 Improved serum lipids (total cholesterol, LDL cholesterol, total cholesterol/HDL cholesterol, LDL cholesterol/HDL cholesterol) vs. baseline
Concentrated pomegranate juice (3.15 mg/day total polyphenols) ¹²	Clinical study in adults with T2D (n=40); 50 g/day for 4 wk	 Reduced serum levels of IL-6 vs. baseline Increased serum total antioxidant capacity vs. baseline

*Amount of total polyphenols was not specified for these studies. Analysis of commercially available pomegranate juice has indicated total polyphenol content ranging from 3.15–437.5 mg/50 mL (/50 g).

BMI= body mass index; CAS= carotid artery stenosis; CHD= coronary heart disease; GAE= gallic acid equivalents;
 HDL= high-density lipoprotein; hs-CRP= high-sensitivity C-reactive protein; IL= interleukin; LDL= low-density lipoprotein; MDA= malondialdehyde;
 MI= myocardial ischemia; mo= month(s); PON= paraoxonase; RCT= randomized controlled trial; T2D= type 2 diabetes; wk= week(s)

Quercetin Clinical and Preclinical Evidence Related to HDL Function and Cardiovascular Health

Ingredient	Study Design	Main Findings
Onion extract ¹³	Clinical study in healthy men (n=23); 4.3 g/day containing 51 mg/day quercetin for 1 mo	Improved postprandial flow-mediated vasodilation vs. baseline
Quercetin ¹⁴	Female C57BL/6 mice; 0.05-2 mg/g diet for 6 wk	Increased hepatic mRNA and protein levels of PON1 vs. control
Quercetin ¹⁵	LDLR ^{.≁} mice fed an atherogenic liquid diet; 0-25 mg/dL quercetin for 8 wk	 Decreased aortic plaques in the ≥ 12.5 mg/dL groups Increased liver and serum PON1 mRNA expression in the ≥ 12.5 mg/dL groups
Quercetin ¹⁶	<i>apoE1</i> ^{./.} mice fed a high-fat diet; 12.5 mg/ kg/day or placebo for 8 wk	 Increased cholesterol efflux from macrophages to HDL Increased cholesterol transport to the liver and bile for excretion
Quercetin ¹⁷	Rats; 10 mg/L or control for 4 wk	 Increased hepatic expression of PON1 Increased serum and liver PON1 activities Protected against LDL oxidation
Quercetin ¹⁸	<i>apoE1^{,,}</i> mice fed a high-fat diet; 12.5 mg/ kg/day or atorvastatin 2.06 mg/kg/day or control for 12 wk	 Reduced serum levels of oxLDL Reduced TNF-α and IL-6 levels Reduced areas of atherosclerotic plaque and increased plaque stability at the aortic root Increased PPARγ, LXRα, and ABCA1 protein levels in aortas and livers
Quercetin ¹⁹	Rabbits fed high-fat diets; 0.05 mg/kg/day or control for 12 wk (aortic atherosclerosis model) or 4 wk (injured carotid artery model)	Reduced formation of atherosclerotic plaques in both models
Quercetin ²⁰	Male Wistar rats; receiving quercetin (dosage n/a) or control	 Increased expression and activity of hepatic cholesterol 7α-hydroxylase Increased expression and activity of hepatic ABCG1
Quercetin ^{21,22}	In vitro model	Enhanced cholesterol efflux from RAW264.7 macrophagesIncreased ABCA1 mRNA and protein expression in macrophages
Quercetin ²³	In vitro model	 Increased cholesterol efflux from foam cells Activated PPARγ-LXRα pathway to upregulate ABCA1 expression
Quercetin ²⁴	In vitro model	 Induced apoA-I protein and mRNA synthesis in HepG2 (hepatocytes) and Caco-2 (intestinal) cells

ABCA1 = ATP-binding cassette transporter A1; ABCG1 = ATP-binding cassette transporter G1; apoA-I = apolipoprotein A-I; HDL= high-density lipoprotein; IL= interleukin; LDL= low-density lipoprotein; LXR= liver X receptor; mo= month(s); mRNA= messenger RNA; oxLDL= oxidized LDL; PON= paraoxonase; PPAR= peroxisome proliferator-activated receptor; TNF= tumor necrosis factor; wk= week(s)

Lycopene Clinical and Preclinical Evidence Related to HDL Function and Cardiovascular Health

Ingredient	Study Design	Main Findings
Lycopene-rich diet or lycopene supplement ²⁵	RCT in overweight subjects (n=54); lycopene-rich diet (224-350 mg/wk) or lycopene supplement (70 mg/wk) or control diet for 12 wk	 Increased serum HDL2 and HDL3 Decreased SAA levels in serum and HDL3 Increased PON1 activity in serum, HDL2, and HDL3 Increased LCAT activity in serum and HDL3 Decreased CETP activity in serum
Tomato ²⁶	Clinical study in patients with T2D (n=32); 200 g/ day tomato for 8 wk	 Increased apoA-I vs. baseline Decreased systolic and diastolic blood pressure vs. baseline
Lycopene ²⁷	RCT in statin-treated patients with CVD (n=36) and healthy volunteers (n=36); 7 mg/day or placebo for 2 mo	 Improved endothelium-dependent vasodilatation in patients with CVD
Lycopene and lutein ²⁸	RCT in subjects with subclinical atherosclerosis (n=144); 20 mg/day lycopene + 20 mg/day lutein for 12 mo	Decreased carotid artery intima-media thickness vs. baseline
Lycopene ²⁹	RCT in healthy men (n=126); 6 mg/day or 15 mg/day or placebo for 8 wk	 Increased plasma superoxide dismutase activity Reduced DNA damage (oxidative stress) in lymphocytes Increased endothelial function in 15 mg/day group vs. baseline Decreased hs-CRP, sICAM-1, and sVCAM-1 in 15 mg/day group vs. baseline
Cooked tomato sauce ³⁰	Pigs fed a hypercholesterolemic diet; 100 g/day containing 21.5 mg/day lycopene or none for 10 days	 Improved HDL function associated with apoA-I and apoJ Prevented diet-induced impairment of endothelial-dependent coronary vasodilation Enhanced eNOS transcription and activation and diminished DNA damage in the coronary arteries Reduced lipid peroxidation
Lycopene ³¹	Diabetic rats and control rats; receiving 10 mg/kg/day or none for 1 mo	Increased PON1 activity
Lycopene ³²	Rabbits fed a high-fat diet; 4-12 mg/kg lycopene or none for 4 and 8 wk	 Reduced serum MDA Reduced oxLDL Reduced IL-1 Increased total antioxidant capacity Increased nitric oxide Reduced atherosclerotic plaques in the aorta
Lycopene ^{33,34}	In vitro model	Increased expression of ABCA1
Lycopene ³⁵	<i>In vitro</i> model	 Reduced proinflammatory cytokine secretion and expression in THP-1 macrophages Reduced reactive oxygen species production

ABCA1 = ATP-binding cassette transporter A1; **apoA-I** = apolipoprotein A-I; **apoJ** = apolipoprotein J; **CETP** = cholesterol ester transfer protein; **CVD** = cardiovascular disease; **DNA** = deoxyribonucleic acid; **eNOS** = endothelial nitric oxide synthase; **HDL** = high-density lipoprotein; **hs-CRP** = highsensitivity C-reactive protein; **IL** = interleukin; **LCAT** = lecithin cholesterol acyltransferase; **MDA** = malondialdehyde; **mo** = month(s); **oxLDL** = oxidized LDL; **PON** = paraoxonase; **RCT** = randomized controlled trial; **SAA** = serum amyloid A; **sICAM-1** = soluble intercellular adhesion molecule-1; **sVCAM-1** = soluble vascular cell adhesion molecule-1; **T2D** = type 2 diabetes; **wk** = week(s)

α-tocopherol Clinical and Preclinical Evidence Related to HDL Function and Cardiovascular Health

Ingredient	Study Design	Main Findings
a-tocopherol ³⁶	RCT in individuals with hypercholesterolemia (n=69); 500 IU/day or placebo for 3 mo	Increased apoA-I levelsIncreased apoA-I/apoB ratio
a-tocopherol ³⁷	RCT in healthy subjects (n=32); 134 mg/ day or 268 mg/day or placebo for up to 28 days	 Increased plasma apoA-I concentration in a time- and dose-dependent manner
a-tocopherol ³⁸	RCT in patients with T2D (n=83); 400 IU/ day or placebo for 8 wk	 Increased PON1 activity and total antioxidant status
a-tocopherol ³⁹	Clinical study in athletes (n=10) in training; 200 mg/day for 1 mo	 Decreased PON1 postexercise; α-tocopherol prevented decreases in PON1 activity postexercise
a-tocopherol ⁴⁰	Clinical study in male patients with T2D (n=80); 300 mg/day for 4 wk	 Decreased SAA vs. baseline Decreased TNF-α and hs-CRP vs. baseline
a-tocopherol ⁴¹	Rabbits fed atherogenic diets; 125 IU/day or 1.25 IU/day (control) for 12 wk	Reduced total cholesterol levelsReduced esterified artery cholesterol levels

Niacin Clinical Evidence Related to HDL Function and Cardiovascular Health		
Ingredient	Study Design	Main Findings
Niacin ⁴²	RCT in patients with a history of CVD (n=126) receiving atorvastatin 10-80 mg/ day; 2 g/day or none for 1 yr	 Increased HDL-C by 39%, HDL-P by 14% and total cholesterol efflux capacity by 16% Increased large HDL particles Reduced small HDL particles
Extended-release nia- cin + laropiprant43	Crossover RCT in statin-treated patients (n=27) who had not achieved the LDL-C target; niacin/laropiprant 1 g/20 mg for 4 wk and then 2 g/40 mg for 8 wk or placebo for 8 wk (4 wk wash-out period)	 Significant reduction in total cholesterol, triglycerides, LDL-C, apoB, Lp(a), CETP activity, oxLDL, Lp-PLa2, lysoPC, MCP-1, SAA No change in HDL antioxidant capacity or PON1 activity 19.5% increase in cholesterol efflux capacity of HDL
Extended-release niacin44	Comparison crossover study in dyslipidemia patients (n=66) with low or normal HDL-C; fenofibrate 160 mg/day for 6 wk or niacin 0.5 g/day for 3 wk and then 1 g/day for 3 wk (4 wk wash-out period)	 Both treatments had a comparable increase in HDL-C and apoA-I, with minor changes in cholesterol efflux capacity
Extended-release niacin ⁴⁵	Crossover RCT in patients with metabolic syndrome (n=37); fenofibrate 160 mg/ day for 6 wk or niacin 0.5 g/day for 3 wk and then 1 g/day for 3 wk (4 wk wash-out period)	 After either treatment patients had HDL with similar endothelial protective properties as from healthy control subjects After treatment HDL particles improved endothelial nitric oxide production

Diet and Lifestyle Clinical Evidence Related to HDL Function and Cardiovascular Health

Diet or Lifestyle	Study Design	Main Findings
Mediterranean diet ⁴⁶	RCT of Mediterranean diet enriched with virgin olive oil (n=100) or nuts (n=100) compared to low-fat diet (n=96) in patients with high cardiovascular risk for 1 yr	 Improved HDL cardioprotective functions Increased PON activity, cholesterol efflux capacity, vasodilation, and improved HDL composition All diets increased percentage of large HDL particles
Mediterranean dietary components ⁴⁷	Secondary analysis of high cardiovascular risk patients (n=296) from PREDIMED clinical trial 1 yr data	 Increasing virgin olive oil (10 g/d) and whole grain (25 g/d) consumption increases cholesterol efflux capacity Increasing nut (30 g/d), legume (25 g/d), and fish (25 g/d) intake improves PON activity
Fruits and vegetables ⁴⁸	RCT in subjects with obesity and T2D; 1 or ≥ 6 portions/day for 8 wk	• \geq 6 portions/day increased PON1 and LCAT activities in HDL3
Improving dietary quality and increasing physi- cal activity levels ⁴⁹	CT in men with obesity and dyslipidemia (n=113); 160 min/wk moderate intensity aerobic activity + moderate caloric restriction (-500 kcal/day) with macronutrient composition of 45-50% carbohydrate, 20-25% protein and 25-30% from fat for 1 yr; compared with control group (n=32)	Increased cholesterol efflux capacityIncreased apoA-I levels
Smoking cessation ⁵⁰	CT in smokers (n=28) in a smoking cessation program using either varenicline or a transdermal nicotine patch for 12 wk	 Improved cholesterol efflux capacity and HDL inflammatory index compared to participants who were unable to quit smoking
Smoking cessation ⁵¹	RCT in smokers (n=923); smoking cessation pharmacotherapies for 1 yr	 Participants who quit smoking (36.2%) had increases in HDL-C, HDL-P, and large HDL Effects were more pronounced in women
Effect of smoking ⁵²	Clinical study in young smokers (n=21) and healthy controls (n=20) comparing lipoprotein parameters	 HDL from young smokers (< 10 cigarettes/d x 3 yrs) had lower antioxidant capacity, smaller particle size, and increased triglyceride content
Vigorous prolonged exercise ⁵³	RCT in 2 cohorts; first group with seden- tary adults with prediabetes with BMI 25-35 (n=106) and the second group with similar but nondiabetic adults (n=90); varying levels of exercise for 6 mo	 Vigorous endurance exercise improved cholesterol efflux capacity Non-ABCA1 cholesterol efflux capacity improved in highest intensity group An exercise intensity or dosage threshold may need to be exceeded to see significant results Exercise matures HDL particles (pre-β to α-HDL)
Exercise ⁵⁴	RCT of women with obesity (n=32); combined aerobic and resistance exercise (moderate-vigorous intensity, 40-60 min, 4x/ wk) or control for 12 wk	 HDL subclasses were restored to "nonobese" state in this population Decreased PON activity, antithrombotic actions, and distribution of small HDL particles—participants did not lose significant amount of weight Cholesterol efflux capacity unchanged
Exercise-based cardiac rehabilitation ⁵⁵	Retrospective analysis of patients (n=57) with acute coronary syndrome who completed or dropped out (used as control) of an exercise-based program (gymnastics and aerobic exercise) 30 min, 3-5x/wk for 6 mo	 Increased HDL cholesterol efflux capacity in participants who successfully completed the program and stopped smoking Program increased exercise capacity
Therapeutic life- style changes ⁵⁶	Prospective pilot study in patients with metabolic syndrome (n=25); 180 min/wk of exercise at 85% maximum heart rate for 12 wk	Reduced oxidation molecules associated with HDL activityIncreased cholesterol efflux capacity

ABCA1= ATP-binding cassette transporter A1; **apoA-I**= apolipoprotein A-I; **BMI**= body mass index; **CT**= clinical trial; **HDL**= high-density lipoprotein; **LCAT**= lecithin cholesterol acyltransferase; **mo**= month(s); **PON**= paraoxonase; **RCT**= randomized controlled trial; **T2D**= type 2 diabetes; **wk**= week(s); **yr**= year(s)

References

- Fuhrman B et al. Pomegranate juice polyphenols increase recombinant paraoxonase-1 binding to high-density lipoprotein: studies in vitro and in diabetic patients. *Nutrition*. 2010;26:359-366.
- Rock W et al. Consumption of wonderful variety pomegranate juice and extract by diabetic patients increases paraoxonase 1 association with high-density lipoprotein and stimulates its catalytic activities. J Agric Food Chem. 2008;56:8704-8713.
- 3. Parsaeyan N et al. Effect of pomegranate juice on paraoxonase enzyme activity in patients with type 2 diabetes. *J Diabetes Metab Disord*. 2012;11:11.
- Aviram M et al. Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima-media thickness, blood pressure and LDL oxidation. *Clin Nutr.* 2004;23:423-433.
- Aviram M et al. Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr. 2000;71:1062-1076.
- Rosenblat M et al. Anti-oxidative effects of pomegranate juice (PJ) consumption by diabetic patients on serum and on macrophages. *Atherosclerosis*. 2006;187:363-371.
- Davidson MH et al. Effects of consumption of pomegranate juice on carotid intima-media thickness in men and women at moderate risk for coronary heart disease. Am J Cardiol. 2009;104:936-942.
- Hamoud S et al. Pomegranate extract (POMx) decreases the atherogenicity of serum and of human monocyte-derived macrophages (HMDM) in simvastatin-treated hypercholesterolemic patients: a double-blinded, placebo-controlled, randomized, prospective pilot study. *Atherosclerosis*. 2014;232:204-210.
- Hosseini B et al. Effects of pomegranate extract supplementation on inflammation in overweight and obese individuals: A randomized controlled clinical trial. *Complement Ther Clin Pract.* 2016;22:44-50.
- 10. Sumner MD et al. Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. *Am J Cardiol.* 2005;96:810-814.
- EsmailIzadeh A et al. Cholesterol-lowering effect of concentrated pomegranate juice consumption in type II diabetic patients with hyperlipidemia. Int J Vitam Nutr Res. 2006;76:147-151.
- Shishehbor F et al. Effects of concentrated pomegranate juice on subclinical inflammation and cardiometabolic risk factors for type 2 diabetes: a quasi-experimental study. Int J Endocrinol Metab. 2016;14:e33835.
- Nakayama H et al. Chronic intake of onion extract containing quercetin improved postprandial endothelial dysfunction in healthy men. J Am Coll Nutr. 2013;32:160-164.
- Boesch-Saadatmandi C et al. Effect of quercetin on paraoxonase 1 activity--studies in cultured cells, mice and humans. J Physiol Pharmacol. 2010;61:99-105.
- Leckey LC et al. Quercetin and ethanol attenuate the progression of atherosclerotic plaques with concomitant up regulation of paraoxonase1 (PON1) gene expression and PON1 activity in LDLR-/- mice. Alcohol Clin Exp Res. 2010;34:1535-1542.
- Cui Y et al. Quercetin improves macrophage reverse cholesterol transport in apolipoprotein E-deficient mice fed a high-fat diet. *Lipids Health Dis.* 2017;16:9.
- Gong M et al. Quercetin up-regulates paraoxonase 1 gene expression with concomitant protection against LDL oxidation. *Biochem Biophys Res Commun*. 2009;379:1001-1004.
- Jia Q et al. Quercetin protects against atherosclerosis by regulating the expression of PCSK9, CD36, PPARgamma, LXRalpha and ABCA1. Int J Mol Med. 2019;44:893-902.
- Juzwiak S et al. Effect of quercetin on experimental hyperlipidemia and atherosclerosis in rabbits. *Pharmacol Rep.* 2005;57:604-609.
- Zhang M et al. Quercetin regulates hepatic cholesterol metabolism by promoting cholesterol-to-bile acid conversion and cholesterol efflux in rats. *Nutr Res.* 2016;36:271-279.
- 21. Chang YC et al. Quercetin enhances ABCA1 expression and cholesterol efflux through a p38-dependent pathway in macrophages. *J Lipid Res.* 2012;53:1840-1850.
- Lee SM et al. Quercetin up-regulates expressions of peroxisome proliferator-activated receptor gamma, liver X receptor alpha, and ATP binding cassette transporter A1 genes and increases cholesterol efflux in human macrophage cell line. *Nutr Res.* 2013;33:136-143.
- Sun L et al. Quercetin increases macrophage cholesterol efflux to inhibit foam cell formation through activating PPARgamma-ABCA1 pathway. Int J Clin Exp Pathol. 2015;8:10854-10860.
- 24. Haas MJ et al. Induction of hepatic apolipoprotein A-I gene expression by the isoflavones quercetin and isoquercetrin. *Life Sci.* 2014;110:8-14.
- McEneny J et al. Lycopene intervention reduces inflammation and improves HDL functionality in moderately overweight middle-aged individuals. J Nutr Biochem. 2013;24:163-168.
- Shidfar F et al. The effects of tomato consumption on serum glucose, apolipoprotein B, apolipoprotein A-I, homocysteine and blood pressure in type 2 diabetic patients. Int J Food Sci Nutr. 2011;62:289-294.
- Gajendragadkar PR et al. Effects of oral lycopene supplementation on vascular function in patients with cardiovascular disease and healthy volunteers: a randomised controlled trial. *PLoS One.* 2014;9:e99070.
- Zou ZY et al. Effects of lutein and lycopene on carotid intima-media thickness in Chinese subjects with subclinical atherosclerosis: a randomised, double-blind, placebo-controlled trial. *Br J Nutr.* 2014;111:474-480.

- Kim JY et al. Effects of lycopene supplementation on oxidative stress and markers of endothelial function in healthy men. *Atherosclerosis*. 2011;215:189-195.
- Vilahur G et al. Intake of cooked tomato sauce preserves coronary endothelial function and improves apolipoprotein A-I and apolipoprotein J protein profile in high-density lipoproteins. *Transl Res.* 2015;166:44-56.
- 31. Yegin SC et al. Effect of lycopene application in rats with experimental diabetes using lipoprotein, paraoxonase and cytokines. *J Membr Biol.* 2013;246:621-626.
- 32. Hu MY et al. Comparison of lycopene and fluvastatin effects on atherosclerosis induced by a high-fat diet in rabbits. *Nutrition.* 2008;24:1030-1038.
- Yang CM et al. Lycopene inhibits the proliferation of androgen-dependent human prostate tumor cells through activation of PPARgamma-LXRalpha-ABCA1 pathway. J Nutr Biochem. 2012;23:8-17.
- Yang CM et al. Lycopene and the LXRalpha agonist T0901317 synergistically inhibit the proliferation of androgen-independent prostate cancer cells via the PPARgamma-LXRalpha-ABCA1 pathway. J Nutr Biochem. 2012;23:1155-1162.
- 35. Palozza P et al. Lycopene prevention of oxysterol-induced proinflammatory cytokine cascade in human macrophages: inhibition of NF-kappaB nuclear binding and increase in PPARgamma expression. J Nutr Biochem. 2011;22:259-268.
- Cloarec MJ et al. Alpha-tocopherol: effect on plasma lipoproteins in hypercholesterolemic patients. *Isr J Med Sci.* 1987;23:869-872.
- Aldred S et al. Alpha tocopherol supplementation elevates plasma apolipoprotein A1 isoforms in normal healthy subjects. *Proteomics*. 2006;6:1695-1703.
- Rafraf M et al. Vitamin E improves serum paraoxonase-1 activity and some metabolic factors in patients with type 2 diabetes: no effects on nitrite/nitrate levels. Journal of the American College of Nutrition. 2016;35:521-528.
- Tsakiris S et al. Alpha-tocopherol supplementation prevents the exercise-induced reduction of serum paraoxonase 1/arylesterase activities in healthy individuals. *Eur J Clin Nutr.* 2009;63:215-221.
- Jamalan M et al. Effect of ascorbic acid and alpha-tocopherol supplementations on serum leptin, tumor necrosis factor alpha, and serum amyloid A levels in individuals with type 2 diabetes mellitus. Avicenna J Phytomed. 2015;5:531-539.
- 41. Schwenke DC et al. Alpha-tocopherol protects against diet induced atherosclerosis in New Zealand white rabbits. *J Lipid Res.* 2002;43:1927-1938.
- Ronsein GE et al. Niacin therapy increases high-density lipoprotein particles and total cholesterol efflux capacity but not ABCA1-specific cholesterol efflux in statin-treated subjects. Arterioscler Thromb Vasc Biol. 2016;36:404-411.
- Yadav R et al. Effect of extended-release niacin on high-density lipoprotein (HDL) functionality, lipoprotein metabolism, and mediators of vascular inflammation in statintreated patients. J Am Heart Assoc. 2015;4:e001508.
- 44. Franceschini G et al. Differential effects of fenofibrate and extended-release niacin on highdensity lipoprotein particle size distribution and cholesterol efflux capacity in dyslipidemic patients. J Clin Lipidol. 2013;7:414-422.
- Gomaraschi M et al. Fenofibrate and extended-release niacin improve the endothelial protective effects of HDL in patients with metabolic syndrome. *Vascul Pharmacol.* 2015;74:80-86.
- Hernaez A et al. Mediterranean diet improves high-density lipoprotein function in highcardiovascular-risk individuals: a randomized controlled trial. *Circulation*. 2017;135:633-643.
- 47. Hernaez A et al. Increased consumption of virgin olive oil, nuts, legumes, whole grains, and fish promotes HDL functions in humans. *Mol Nutr Food Res.* 2019;63:e1800847.
- 48. Daniels J-A et al. A randomised controlled trial of increasing fruit and vegetable intake and how this influences the carotenoid concentration and activities of PON-1 and LCAT in HDL from subjects with type 2 diabetes. *Cardiovascular Diabetology*. 2014;13:16.
- Boyer M et al. Impact of a one-year lifestyle modification program on cholesterol efflux capacities in men with abdominal obesity and dyslipidemia. *Am J Physiol Endocrinol Metab.* 2018;315:E460-E468.
- 50. Takata K et al. Impact of cigarette smoking cessation on high-density lipoprotein functionality. *Circ J.* 2014;78:2955-2962.
- 51. Gepner AD et al. Effects of smoking and smoking cessation on lipids and lipoproteins: outcomes from a randomized clinical trial. *Am Heart J.* 2011;161:145-151.
- Park KH et al. Dysfunctional lipoproteins from young smokers exacerbate cellular senescence and atherogenesis with smaller particle size and severe oxidation and glycation. *Toxicol Sci.* 2014;140:16-25.
- Sarzynski MA et al. Effects of increasing exercise intensity and dose on multiple measures of HDL (high-density lipoprotein) function. Arterioscler Thromb Vasc Biol. 2018;38:943-952.
- 54. Woudberg NJ et al. Exercise intervention alters HDL subclass distribution and function in obese women. *Lipids Health Dis.* 2018;17:232.
- Koba S et al. Beneficial effects of exercise-based cardiac rehabilitation on high-density lipoprotein-mediated cholesterol efflux capacity in patients with acute coronary syndrome. *J Atheroscler Thromb.* 2016;23:865-877.
- Mathew AV et al. Therapeutic lifestyle changes improve hdl function by inhibiting myeloperoxidase-mediated oxidation in patients with metabolic syndrome. *Diabetes Care*. 2018;41:2431-2437.

