Labs to Identify High-density Lipoprotein (HDL) Risk

Learn which lab tests can help you better understand HDL and cardiovascular (CV) risk

HDL-Cholesterol (HDL-	-C)
What does this test measure?	• This blood test measures the amount of cholesterol present within the HDL particles (HDL-P) in circulation.
Why would I test?	 In large cohort studies, very low levels of HDL-C were associated with increased risk of developing cardiovascular disease (CVD).¹⁻⁶ HDL-C is closely linked with insulin resistance and is often part of an atherogenic dyslipidemia phenotype.⁷ Finding low HDL-C can add to a picture of general metabolic risk.
What should I know?	 The relationship between HDL-C and CV risk is not linear (i.e., higher HDL-C is not more protective). In a large cohort of 24,510 men and women, HDL-C levels above 75 mg/dL for men and 90 mg/dL for women did not provide any additional cardioprotective effects.⁹ In a Japanese cohort, HDL-C greater than or equal to 90 mg/mL in both men and women was associated with increased CV mortality risk,⁹ a finding echoed in a Northern European cohort, where it was found that HDL-C greater than or equal to 116 mg /dL for men and 135 mg /dL in women was linked with greater risk of CV mortality.¹⁰ In a cohort of 1,764,986 men who were United States veterans followed for ~10 years, a U-shaped curve was identified with HDL-C and all-cause mortality. Individuals at both ends of the curve (low and very high) were seen to be at greater risk of all-cause mortality.¹¹ Clinical studies with cholesterol ester transfer protein (CETP) inhibitors failed to reduce CV risk despite raising HDL by 40-133%.¹²⁻¹⁴ Large cohort studies have shown that individuals with high HDL-C due to genetic variation are not protected against CVD.¹⁵ These newer data suggest that HDL-C measurement alone is not sufficient to understand CV risk. Additionally, HDL-C does not provide any information on HDL function. Studies show HDL can be dysfunctional when HDL-C are below or within normal values.¹⁶
Normal reference ranges?*	 Women: 50-90mg /dL Men: 40-90mg /dL Values > 90-135mg /dL for women and > 90-116mg /dL for men have been associated with increased CV risk^{9,10}

HDL-Particle Number	
What does this test measure?	This blood test measures the number of HDL particles in circulation.
Why would I test?	• Data from multiple cohort studies has demonstrated that HDL-P is superior to HDL-C in assessing CVD. ^{17,18}
What should I know?	 The JUPITER trials showed HDL-P is a greater predictor of residual risk than HDL-C, cholesterol efflux capacity, or apoAl, when using potent statins as a therapy.^{17,19} Clinical cohort studies measuring HDL-P by both nuclear magnetic resonance (NMR) or Ion Mobility Spectrometry, have shown that HDL-P is inversely related to risk of developing heart disease.²⁰ HDL-P was shown to correlate with cholesterol efflux capacity (spearman correlation coefficient of 0.39; p < 0.0001).¹⁷
Normal reference ranges?*	 Women and men: > 7,000 nmol/L^{13,14}

HDL Mapping				
What does this test measure?	• HDL Mapping provides information on the 5 different subspecies of HDL molecules from pre- β -1 (small discoid particles with low levels of cholesterol and high capacity to accept cholesterol) through α -4, α -3, α -2, and α -1 particles, which get progressively larger and more spherical as they accumulate more cholesterol.			
Why would I test?	 Lower levels of the large smaller pre-β-1 particle particles (α-1) are respo components provide in important as initially the 	er α-1 particles are associated w s have a greater ability to accept nsible for efflux of cholesterol s sights into the reverse cholester ought. ^{21,22}	vith the development of cardic ot cholesterol from peripheral c through SR-BI (from peripheral erol transport process and, HDI	wascular disease. Functional cells through ABCA-1. ²⁰ Larger cells or to the liver). ²¹ Both particle size may not be as
What should I know?	 In male participants of the lower levels of cholester suggest that maturation inadequate reverse chomological in the HDL-Atheroscleror increase in α-1 HDL part. In a group of subjects with However, the function a triglycerides.²² In subjects with type 2 of function was impaired.² These results in total increase to understand. 	the Framingham offspring stuc rol-rich larger α -1 HDL particles in of pre- β -1 HDL particles into elesterol transport. ²³ posis Treatment Study using a ni ticles halted progression of arte with raised triglycerides, pre- β - and capacity for cholesterol eff diabetes, pre- β -1 concentratio diabetes that the size and concer play an important role in rever	ly, higher levels of the lipid-poo s were correlated with coronary larger cholesterol-rich particles acin-simvastatin combination, erial stenosis. ²⁴ I concentration was reduced co lux was significantly increased i ns were increased compared w stration of different HDL subspe- rse cholesterol transport, and si	or pre-β-1 HDL particles and y heart disease risk. ²² These results was impaired, which resulted in participants with the greatest compared to healthy controls. ²¹ in the group with high ith controls; however, their HDL ecies is not as clear cut as initially ubspecies function is important
Normal reference	Men	Optimal	Borderline mg/dL	Increased Risk
Tange	α-1 α-2 α-3 α-4 Ρreβ-1	> 35.0 > 55.0 < 20.0 < 20.0 < 20.0	25.0-35.0 45.0-55.0 20.0-25.0 20.0-25.0 20.0-25.0	< 25.0 < 45.0 > 25.0 > 25.0 > 25.0
	Women	Optimal	Borderline mg/dL	Increased Risk
	α-1	> 45.0	35.0-45.0	< 35.0
	α-2	> 65.0	55.0-65.0	< 55.0
	α-3	< 20.0	20.0-25.0	> 25.0
	u-4 Droß 1	< 20.0	20.0-25.0	> 25.0
	Preb-1	< 20.0	20.0-25.0	> 25.0

HDL Subclasses	
What does this test measure?	• HDL subclasses measure the concentration of larger, more buoyant HDL2b and the smaller, less buoyant HDL3 in circulation.
Why would I test?	 Concentrations of HDL2 and HDL3 have been associated with reduced risk of cardiovascular disease.²⁶ In more recent studies, higher levels of HDL3 were associated with reduced risk of developing arterial stiffness and reduced risk of developing coronary heart disease.²⁷
What should I know?	• The literature supporting the link between HDL2, HDL3, and cardiovascular disease is mixed. A review of 80 studies highlights this variability, wherein several studies report a link between higher HDL2 and reduced cardiovascular risk; other studies report that higher HDL3 concentrations drive risk reduction. ²⁶
Normal reference range?*	 HDL-2 Cholesterol: 9-38 mg/dL HDL-3 Cholesterol: 22-35 mg/dL

Myeloperoxidase (MPG	D)
What does this test measure?	This test measures levels of circulating a pro-oxidant protein expressed in and secreted from proinflammatory immune cells.
Why would I test?	 Circulating MPO is linked with increased risk of developing CVD and to greater risk of adverse events following a myocardial infarction (MI).^{28,29} HDL particles and the apoA-I proteins on HDL can be modified by MPO, causing them to become dysfunctional.³⁰
What should I know?	 Several human studies implicate MPO in the development of atherosclerotic plaques.³¹ In a study of ~3,300 men and women, circulating MPO concentrations at baseline predicted the risk of development of coronary artery disease over an 8-year follow-up.³² Circulating MPO levels predict adverse outcomes following MI.^{28,29} MPO-modified apoA-I recovered from human atherosclerotic plaque showed impaired cholesterol efflux capacity and had potent proinflammatory activity on endothelial cells.³³ Elevated circulating levels of MPO-modified apoA-1 was associated with increased CV risk in humans.³³ In HDL isolated from healthy people, exposure to a pro-oxidant metabolite of MPO led to a reduction in HDL function as seen by a reduction in cholesterol efflux capacity and a failure to activate endothelial nitric oxide (eNOS).³⁴ Additionally, MPO-modified HDL increased the expression of vascular inflammation markers.³⁴
Normal reference range?*	< 470pmol/L* cardiovascular risk; other studies report that higher HDL3 concentrations drive risk reduction.

High-Sensitivity C-Reative Protein (hsCRP)		
What does this test measure?	• This is a high-sensitivity assay to assess the concentration of C-reactive protein in circulation.	
Why would I test?	• hsCRP is a biomarker of inflammation and, increased circulating concentrations are associated with an increased risk for developing cardiovascular disease.	
What should I know?	 An inflammatory environment is associated with HDL dysfunction. In individuals participating in the the PREVEND (Prevention of Renal and Vascular End-stage Disease) study, higher hsCRP concentrations correlated significantly with lower cholesterol efflux capacity.³⁵ 	
Normal reference range?*	• < 1.0 mg /L is optimal	

Circulating ApolipoproteinA-I (apoA-I)		
What does this test measure?	This test measures the concentration of apoA-I in circulation.	
Why would I test?	• apoA-I is the major protein on HDL and is involved in the transport of cholesterol from peripheral cells into the HDL particle.	
What should I know?	 The JUPITER (Justification for the Use of Statins in Prevention: an Intervention Trial Evaluating Rosuvastatin) trial showed HDL-P is a greater predictor of residual risk than HDL-C, cholesterol efflux capacity, or apoA-I, when using potent statins as a therapy.^{17,19} MPO-modified apoA-I recovered from human atherosclerotic plaque showed impaired cholesterol efflux capacity and had potent proinflammatory activity on endothelial cells.³³ Elevated circulating levels of MPO-modified apoA-I was associated with increased CV risk in humans.³³ 	
Normal reference range?*	 Men: > 160 mg/dL Women: > 180 mg/dL 	

	Research tests
Paraoxonase (PON)	
What does this test measure?	This test measures PON protein concentration associated with HDL.Tests can also measure the activity of PON.
Why would I test?	• PON is a protein with antioxidant capacity that protects low-density lipoprotein (LDL) from oxidation. ^{29,30,36}
What should I know?	 Antioxidant activity of PON decreases with age.^{37,38} Several preclinical studies suggest that PON1 may play a role in supporting cholesterol efflux capacity.³⁹ In the PREVEND study (n=6,029 people followed over 9 years), increased PON activity was associated with increased risk of developing CVD.⁴² However, PON activity did not provide additional improvement in risk assessment beyond what traditional biomarkers could predict.⁴² In subjects with high HDL-C and hsCRP, decreased PON activity is associated with incident CVD risk.⁴¹
Normal reference range?	Research tool

Cholesterol Efflux Capacity		
What does this test measure?	• This test commonly measures the movement or efflux of cholesterol from macrophages or foam cells into HDL.	
Why would I test?	 Cholesterol efflux capacity is a measure of HDL function and is considered a surrogate marker of reverse cholesterol transport.⁴² Cholesterol efflux capacity is inversely associated with the development of CVD and survival following MI.^{35,43,44} 	
What should I know?	 In the PREVEND study (n=8592 with a follow-up of 12 years), a comparison of cases with cardiovascular disease compared with healthy controls with identical HDL-C and apoA-I levels, cholesterol efflux capacity from foam cells was significantly lower in cases.³⁵ Cholesterol efflux capacity was inversely associated with incident cardiovascular events.³⁵ In a generally healthy population of men participating in the Health Professionals Follow-up Study, baseline cholesterol efflux capacity predicted the risk of developing cardiovascular disease.⁴⁵ However, controlling for baseline HDL-C removed the predictive power of cholesterol efflux capacity, indicating this test might not improve clinical decision making.³⁷ In patients hospitalized with acute MI (n=1609), higher cholesterol efflux capacity was a strong predictor of survival.⁴⁶ Patients with higher cholesterol efflux capacity experienced a markedly lower rate of mortality after 6 years.³⁶ The JUPITER trials showed HDL-P is a greater predictor of residual risk than HDL-C, cholesterol efflux capacity, or apoAl, when using potent statins as a therapy.^{10,12} 	
Normal reference range?*	Varies depending on method and cell type usedResearch tool	

HDL-Apolipoprotein E (apoE) content		
What does this test measure?	This measures the concentration of the apoE on HDL particles.	
Why would I test?	• In a study of 3696 men and women, higher apoE reduced the risk of developing coronary heart disease. ³⁸ Those in the highest quintile of HDL-apoE had a 35% reduction in risk. ³⁸	
What should I know?	 Only ~4% of HDL contains apoE.³⁸ Tracer studies in humans show that presence of apoE on HDL leads to faster clearance through the liver, with this more rapid metabolism thought to reflect enhanced reverse cholesterol transport.³⁸ apoE protective properties are blocked by the presence of apoCIII on the HDL particle.⁴⁷ This is thought to delay HDL metabolism and clearance, reflecting slowed reverse cholesterol transport.³⁸ 	
Normal reference range?*	Research tool	

HDL-Apolipoprotein CIII (apoCIII) content		
What does this test measure?	This test measures the concentration of the apoCIII on HDL particles.	
Why would I test?	• Increased apoCIII content of HDL is associated with an increased risk of developing coronary heart disease. ³⁹	
What should I know?	 6-8% of HDL particles have apoCIII present.³⁹ The presence of apocIII on HDL appears to block protective properties of apoE. This is thought to delay HDL metabolism and clearance, reflecting slowed reverse cholesterol transport.³⁸ The MESA (Multi-Ethnic Study of Atherosclerosis) study (n= 5675 men and women aged 52-72 years followed for up to 13 years) and DCH (Danish Diet, Cancer, and Health) study (n= 3642 men and women aged 51-64 years followed for up to 16 years) cohorts demonstrated higher apoCIII content of HDL increased the risk of developing cardiovascular disease.³⁹ In nested case-control cohorts from the Nurses' Health Study and the Health Professionals Follow-Up Study higher levels of HDL without apoCIII lowered the risk of developing coronary heart disease.⁴⁰ In a study of subjects with (n=140) and without (n=99) coronary artery disease, the apoCIII content of HDL was inversely correlated with cholesterol efflux capacity, indicating the presence of apoCIII impacts HDL-mediated cholesterol efflux capacity and HDL function.⁴¹ 	
Normal reference range?*	Research tool	

REFERENCES

- 1. Barr DP et al. Am J Med. 1951;11(4):480-493.
- 2. Gordon T et al. Am J Med. 1977;62(5):707-714.
- 3. Castelli WP et al. JAMA. 1986;256(20):2835-2838.
- 4. Cullen P et al. Circulation. 1997;96(7):2128-2136.
- 5. Sharrett AR et al. Circulation. 2001;104(10):1108-1113.
- 6. Emerging Risk Factors C et al. JAMA. 2009;302(18):1993-2000.
- 7. Rashid S et al. Clin Biochem. 2003;36(6):421-429.
- 8. Wilkins JT et al. J Am Heart Assoc. 2014;3(2):e000519.
- 9. Hirata A et al. J Clin Lipidol. 2018;12(3):674-684.e5.
- 10. Madsen CM et al. Eur Heart J. 2017;38(32):2478-2486.
- 11. Bowe B et al. Clin J Am Soc Nephrol. 2016;11(10):1784-1793.
- 12. Lincoff AM et al. N Enal J Med. 2017;376(20):1933-1942.
- 13. Schwartz GG et al. N Engl J Med. 2012;367(22):2089-2099.
- 14. Barter PJ et al. N Engl J Med. 2007;357(21):2109-2122.
- 15. Voight BF et al. Lancet. 2012;380(9841):572-580.
- 16. de la Llera-Moya M et al. Arterioscler Thromb Vasc Biol. 2010;30(4):796-801.
- 17. Khera AV et al. Circulation. 2017;135(25):2494-2504.
- 18. Mackey RH et al. J Am Coll Cardiol. 2012;60(6):508-516.
- 19. Mora S et al. Circulation. 2013;128(11):1189-1197.
- 20. Davidson WS. Clin Chem. 2014;60(11):e1-3.
- 21. Yancey PG et al. J Lipid Res. 2004;45(9):1724-1732.
- 22. Asztalos BF et al. J Lipid Res. 2017;58(6):1238-1246.
- 23. Asztalos BF et al. Arterioscler Thromb Vasc Biol. 2004;24(11):2181-2187.
- 24. Asztalos BF et al. Arterioscler Thromb Vasc Biol. 2003;23(5):847-852.

- 25. Shiu SW et al. Atherosclerosis. 2017;263:24-28.
- 26. Superko HR et al. J Clin Lipidol. 2012;6(6):496-523.
- 27. Joshi PH et al. Eur J Prev Cardiol. 2016;23(1):41-49.
- 28. Brennan ML et al. N Engl J Med. 2003;349(17):1595-1604.
- 29. Dullaart RP et al. Atherosclerosis. 2014;234(1):185-192.
- 30. Tietge UJF. Curr Opin Endocrinol Diabetes Obes. 2018;25(2):137-142.
- 31. Teng N et al. Redox Rep. 2017;22(2):51-73.
- 32. Meuwese MC et al. J Am Coll Cardiol. 2007;50(2):159-165.
- 33. Huang Y et al. Nat Med. 2014;20(2):193-203.
- 34. Undurti A et al. J Biol Chem. 2009;284(45):30825-30835.
- 35. Ebtehaj S et al. Arterioscler Thromb Vasc Biol. 2019;39(9):1874-1883.
- 36. Brushia RJ et al. J Lipid Res. 2001;42(6):951-958.
- 37. Jaouad L et al. Atherosclerosis. 2006;185(1):191-200.
- 38. Seres I et al. Exp Gerontol. 2004;39(1):59-66.
- 39. Khalil A et al. Can J Physiol Pharmacol. 2017;95(10):1254-1262.
- 40. Kunutsor SK et al. Atherosclerosis. 2016;245:143-154.
- 41. Corsetti JP et al. J Clin Med. 2019;8(9).
- 42. Cuchel M et al. J Clin Lipidol. 2018;12(5):1086-1094.
- 43. Cahill LE et al. J Lipid Res. 2019;60(8):1457-1464.
- 44. Guerin M et al. J Am Coll Cardiol. 2018;72(25):3259-3269.
- 45. Morton AM et al. JCI Insight. 2018;3(4).
- 46. Jensen MK et al. Circulation. 2018;137(13):1364-1373.
- 47. Jensen MK et al. J Am Heart Assoc. 2012;1(2).
- 48. Luo M et al. Sci Rep. 2017;7(1):2312.

